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1 Outline

In this lecture, we cover

• newsvendor problem,

• scenarios,

• optimization under data uncertainty,

• risk measures.

2 Optimization under uncertainty

Consider the optimization model

min f(x)

s.t. gi(x) ≤ bi, i ∈ [m].

In this section, we examine the data that goes into optimization models.

• For linear and integer programs, these are the objective coefficients c, the constraint matrix
A, and the right-hand side vector b.

• We will call the data ξ. We may think of this as a vector of a matrix that stores problem
information (costs, resource amounts, prices, demands, etc).

In many situations, some or all of the data are uncertain, meaning that we have to estimate the
values but we do not know them exactly. We will study how to model such problems.

2.1 Example: newsvendor problem

A newsvendor must choose a quantity x ∈ Z+ of newspapers to print on a particular day. The cost
of printing a copy is c > 0. Each copy of newspapers is sold at price p > c. Each copy of unsold
newspapers must be discarded at cost h > 0.

The demand for a newspaper on a particular day is ξ ∈ Z+. However, the demand value ξ is
unknown to the newsvendor at the time it must decide on x. How do we model this problem?

The objective of the newsvendor is to maximize its profit. The profit is given by

f(x, ξ) = p ·min{x, ξ} − c · x− h ·max{0, x− ξ}.

How can we determine the optimal quantity x without known the demand ξ?
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2.2 Scenarios

Consider again the generic optimization model with data made explicit.

min f(x, ξ)

s.t. gi(x, ξ) ≤ bi, i ∈ [m].

While we do not know ξ exactly, we need to have some knowledge of ξ. Assume that we have
access to a finite set of scenarios ξ1, . . . , ξN . These are possible outcomes for ξ. Scenario ξi
may come with probability pi ≥ 0 of occurence, i.e., we have∑

i∈[N ]

pi = 1, p ≥ 0.

Where do scenarios come from? Typically, historical data. For the newsvendor problem, it may be
past observations of demands.

Why do we only consider finitely many scenarios? Probability distributions such as normal, uniform,
exponential distributions have infinitely many outcomes. In constrast, historical data is typically
finite. Even if the uncertainty ξ is drawn from a continuous distribution, it is hard to process this
in an optimization model. Therefore, a classical approach is simulation. Basically, we generate
samples ξ1, . . . , ξN from the continuous distribution, and use the empirical distribution as an
approximation. The empirical distribution is defined by

P [ξ = ξi] =
1

N
, i ∈ [N ].

2.3 Optimization models with data uncertainty

Consider again the optimization model

min f(x, ξ)

s.t. gi(x, ξ) ≤ bi, i ∈ [m].

Assume that we have finitely many scenarios ξ1, . . . , ξN for ξ. Think of the decision-making
process as occurring in two steps as follows.

1. We build a proxy optimization mode using the scenarios ξ1, . . . , ξN to help us make a
decision x̂N . For the newsvendor problem, we use historical demand data to choose how
many newspapers to print.

2. The “true” data ξ is revealed, but we must implement our decision x̂N before and accept
its consequences. For the newsvendor problem, the actual demand ξ for that day is revealed,
and we make profit of

f(x̂N , ξ) = p ·min{x̂N , ξ} − c · x̂N − h ·max{0, x̂N − ξ}.

Note that ξ may or may not be part of the scenario list {ξ1, . . . , ξN}.

Another approach is to obtain N copies of the original optimization model with ξ = ξi plugged in.
Then we obtain x1, . . . , xN different decisions, and we may attempt to aggregate these decisions
somehow. However, this is different from the above approach.
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For simplicity, we consider a model with a single uncertain constraint. We may extend our
discussion for the single constraint setting to multiple uncertain constraints and uncertain objectives
in a straightforward manner.

min f(x)

s.t. g(x, ξ) ≤ 0,

x ∈ X

where X is a set containing the exact constraints. Given a fixed decision x and scenarios ξ1, . . . , ξN ,
we may consider the N different values

g(x, ξ1), . . . , g(x, ξN ).

Here, the constraint may be satisfied for some, but not for others. How can we decide on a single
decision x based on the N different values?

3 Risk measures

Higher values of g(x, ξ) are “more risky” than lower values, i.e., they come closer to violating the
constraint g(x, ξ) ≤ 0 or may already violate it.

When we are given scenarios, some values of g(x, ξ1), . . . , g(x, ξN ) are more risky than others.
Therefore, to meaningfully compare decisions x and x′, we must measure the aggregat risk across
all scenarios g(x, ξ1), . . . , g(x, ξN ) in some way, and then do the same for g(x′, ξ1), . . . , g(x′, ξN ).

A risk measure is simply the name of a formal framework to think about this idea. We can easily
think of several ways of aggregating g(x, ξ1), . . . , g(x, ξN ) in order to make our decision, which are
all technically risk measures.

Formally, a risk measure ρ : RN → R maps a vector of different possible outcomes g(x, ξ1), . . . , g(x, ξN )
to a single number

ρ (g(x, ξ1), . . . , g(x, ξN )) .

We will use the following shorthand notation

ρg

(
x; {ξi}i∈[N ]

)
:= ρ (g(x, ξ1), . . . , g(x, ξN )) .

We then find x̂N by solving

min f(x)

s.t. ρg

(
x; {ξi}i∈[N ]

)
≤ 0,

x ∈ X

Then the next question is, which risk measures should we use?

We want risk measures to have a basic monotonicity property. That is,

g(x, ξi) ≤ g(x′, ξi) ∀i ∈ [N ] ⇒ ρg
(
x;
{
ξi}i∈[N ]

})
≤ ρg

(
x′;
{
ξi}i∈[N ]

})
.

In other words, if the risk at every scenario is greater, then the aggregate risk should be greater.
There are other reasonable properties that we can think of, but we will not explore these in detail.
Instead, we will focus on specific risk measures that can be modeled using linear constraints.
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3.1 Risk measure 1: expectation

Assume that there exists a distribution over the scenarios, i.e., weights p1, . . . , pN ≥ 0 such
that

∑
i∈[N ] pi = 1, capturing the likelihood of each scenario. Define a distribution P̂N as the one

that satisfies
Pξ∼P̂N

[ξ = ξi] = pi, i ∈ [N ].

The expectation risk measure is simply the expectation of g(x, ξ) over the distribution P̂N :

ρg

(
x; {ξi}i∈[N ]

)
= Eξ∼P̂N

[g(x, ξ)] =
∑
i∈[N ]

pi · g(x, ξi).

When p1, . . . , pN correspond to the empirical distribution, then we have pi = 1/N .

Lemma 18.1. If g(x, ξi) for each i ∈ [N ] is linearly representable, then so is the expectation risk
measure.

3.2 Risk measure 2: worst-case value (robust optimization)

The worst-case value risk measure is defined by

ρg

(
x; {ξi}i∈[N ]

)
= max

i∈[N ]
g(x, ξi).

There is no need for likelihood weights pi. If g(x, ξi) is linearly representable, then ρg

(
x; {ξi}i∈[N ]

)
is also linearly representable. Why? Note that

ρg

(
x; {ξi}i∈[N ]

)
≤ 0

is equivalent to
g(x, ξi) ≤ 0, i ∈ [N ].

3.3 Issues with expectation and worst-case value

Expectation and worst-case value as a risk measure are useful, but there are some shortcomings.
Consider two scenarios, 1 and 2, and two possible decisions x and x′.

i 1 2
pi 0.5 0.5

g(x, ξi) −1 1
g(x′, ξi) −100 100

Then it follows that

Eξ∼P̂N
[g(x, ξ)] =

1

2
· (−1) +

1

2
· 1 = 0, Eξ∼P̂N

[
g(x′, ξ)

]
=

1

2
· (−100) +

1

2
· 100 = 0.

However, it is not intuitive at all to perceive x and x′ as the same. In the worst case, x′ has value
100 which is much worse than 1. On the other hand, focusing on the worst-case is sometimes too
conservative. If we only have 0.001% chance of a bad value, then maybe it is not too dangerous
to ignore the worst case.

Is there a systematic way to better account for risk values while being less conservative than the
worst-case value?
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