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1 Outline

In this lecture, we cover

• disjunctive constraints,

• production with economic feasibillity,

• a variant of the facility location problem.

2 Disjunctive constraints

We wish to switch between two different constraints:

a⊤x ≤ b, c⊤x ≤ d.

Since we switch between the two constraints, at least one of them must be satisfied. Therefore,
we can write this as

a⊤x ≤ b or c⊤x ≤ d.

The “or” relationship is refer to as a disjunction.

How can we model this disjunction with linear constraints? We use a binary variable y ∈ {0, 1} to
indicate which of the two constraints in the disjunction is satisfied. We model implications

y = 0 ⇒ a⊤x ≤ b

y = 1 ⇒ c⊤x ≤ d.

Suppose that we know a⊤x never exceeds b +Ma for some Ma > 0. Suppose also that c⊤x never
exceeds d +Mc for some Mc > 0. Then we may model the implications with the following linear
constraints.

a⊤x ≤ b+May

c⊤x ≤ d+Mc(1− y).

This is another application of the big-M technique.

Note that “p or q” is logically equivalent to the statement

¬p ⇒ q.

Therefore,
a⊤x ≤ b+May, c⊤x ≤ d+Mc(1− y)

is equivalent to
a⊤x > b ⇒ c⊤x ≤ d.

The reason is that if a⊤x > b, then a⊤x ≤ b +May forces y = 1. Then c⊤x ≤ d +Mc(1 − y) and
y = 1 induce c⊤x ≤ d.
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We may have systems of linear inequalities in a disjunction as follows.

Ax ≤ b or Cx ≤ d.

As before, we assume that there exist sufficiently large constants MA,MC > 0 such that

Ax ≤ b+MA1, Cx ≤ d+MC1

hold where 1 is the vector of all ones. Then the following models the disjunction.

Ax ≤ b+ y ·MA1,

Cx ≤ d+ (1− y) ·MC1,

y ∈ {0, 1}

3 Production with economic feasibility

Dorian Auto is considering manufacturing three types of automobiles: compact, midsize, and large
cars. The resources required for and the profits yielded by each type of cars are shown in the
following table.

Resource
Car type

Available resource
Compact Midsize Large

Steel 1.5 tons 3tons 5 tons 6,000 tons
Labor 30 hours 25 hours 40 hours 60,000 hours

Profit ($) 2,000 3,000 4,000

Due to setup costs, if Dorian chooses to produce a certain type of car, it is only economically
feasible to produce at least 1,000 cars of that type. Then we formulate an integer programming
model to maximize Dorian’s profit.

Decisions: Let x1, x2, x3 denote the number of compact cars, the number of midsize cars, and
the number of large cars that we produce. Hence thy are nonnegative integer variables.

Resource constraints: The current stock of steel is 6,000 tons, and that of labor resources is
60,000 hours. Therefore, we have

1.5x1 + 3x2 + 5x3 ≤ 6000

30x1 + 25x2 + 40x3 ≤ 60000

x1, x2, x3 ∈ Z+

Objective: We want to maximize the profit:

max 2000x1 + 3000x2 + 4000x3.

Economic feasibility constraints: If we produce a nonzero quantity of car type i, then we need
to produce at least 1000 units. Hence, we have the implication

xi > 0 ⇒ xi ≥ 1000.
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This is equivalent to
xi ≤ 0 or xi ≥ 1000.

As this is a disjunctive constraint, we may model this with linear constraints and binary variables.
For each type i, we use binary variable yi ∈ {0, 1} and add constraints

xi ≤ Mi,1yi

−xi ≤ −1000 +Mi,2(1− yi)

yi ∈ {0, 1}.

What should Mi,1 be? From the first resource constraint, we have

1.5x1 + 3x2 + 5x3 ≤ 6000 ⇒ x1 ≤ 4000, x2 ≤ 2000, x3 ≤ 1200.

Therefore, we may set
M1,1 = 4000, M2,1 = 2000, M3,1 = 1200.

What should Mi,2 be? We know that −xi ≤ 0 for any i. Therefore, we may set

Mi,2 = 1000, i ∈ {1, 2, 3}.

Then −xi ≤ −1000 +Mi,2(1− yi) becomes

xi ≥ 1000yi.

In summary, we deduce the following model.

max 2000x1 + 3000x2 + 4000x3

s.t. 1.5x1 + 3x2 + 5x3 ≤ 6000

30x1 + 25x2 + 40x3 ≤ 60000

1000y1 ≤ x1 ≤ 4000y1

1000y2 ≤ x2 ≤ 2000y2

1000y3 ≤ x3 ≤ 1200y3

x1, x2, x3 ∈ Z+,

y1, y2, y3 ∈ {0, 1}

4 Facility location revisited

Suppose that we have d different suburbs. We want to select some of these to be locations for fire
stations.

• The expected number of yearly fire calls for each suburb j is given by ej .

• The travel cost between location i and location j is cij .

• The recurring yearly cost of maintaining a fire station in a suburb j is fj .

How can we decide which suburbs to place fire stations in to minimize the yearly cost?
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Categorical decisions: Let xj be a binary variable for each location j ∈ [d].

xj =

{
1, if a fire station is located in suburb j,

0, no fire station in suburb j.

Constraints: We do not have constraints on the number of fire stations for this particular prob-
lem.

Objective: Again, we want to minimize the yearly cost. Suppose that we have a fire station at
location i and that the fire station serves suburb j. If a fire breaks out at location j, then it incurs
travel cost of cij from fire station at i. Yearly, the expected cost is cijej as ej is the number of fires
at location j. Moreover, suburb j pays fj for the maintenance of its assigned fire station. Hence,
the objective is

min
∑
j∈[d]

fjxj + ej
∑
i∈[d]

cij · 1 [fire station at i serves j]


For each suburb j, we select a fire station to serve it, for which we introduce binary variables

yij =

{
1, if fire station at suburb i serves suburb j

0, otherwise.

One fire station is selected for each suburb, so we add∑
i∈[d]

yij = 1.

As before, we add constraints
yij ≤ xi, i, j ∈ [d]

to model implications yij = 1 ⇒ xi = 1.

Then we can rewrite the travel cost for suburb j as

ej
∑
i∈[d]

cijyij .

Consequently, the complete model is given by

min
∑
j∈[d]

fjxj +
∑
j∈[d]

∑
i∈[d]

ejcijyij

s.t.
∑
i∈[d]

yij = 1, j ∈ [d]

yij ≤ xi, i, j ∈ [d]

x ∈ {0, 1}d, y ∈ {0, 1}d×d

4



In fact, we do not need to impose the binary constraints y ∈ {0, 1}d×d. Instead, we add constraints
yij ≥ 0 for i, j ∈ [d]. Then

min
∑
j∈[d]

fjxj +
∑
j∈[d]

∑
i∈[d]

ejcijyij

s.t.
∑
i∈[d]

yij = 1, j ∈ [d]

0 ≤ yij ≤ xi, i, j ∈ [d]

x ∈ {0, 1}d.

Solving this model would automatically impose y ∈ {0, 1}d×d.
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