
IE 331 OR: Optimization KAIST, Spring 2023
Lecture #16: Integer programming II April 27, 2023
Lecturer: Dabeen Lee

1 Outline

In this lecture, we cover

• facility location review,

• modeling logical relationships with binary variables,

• transportation problem with ramp-up costs.

2 Facility location recap

When modeling the facility location problem, we had to deal with constraints of the form

t ≥ min
i∈[d]: xi=1

fij , j ∈ [d].

We learned how to convert this type of constraints into linear inequalities subject to adding more
binary variables. In this section, we generalize this argument so that we may take care of other
constraints of similar forms.

Note that the constraints can be generalized as

t ≥ min
i∈M(x)

fi

where M(x) ⊆ [d] is some index subset that depends on decision variables x. Then the constraint
is satisfied if and only if

∃i ∈ M(x) such that t ≥ fi. (⋆)

Let Ei denote the event that t ≥ fi. Here, our modeling trick is to use a binary variable yi ∈ {0, 1}
to indicate event Ei. Let us consider the following constraints.∑

i∈[d]

yi = 1,

t ≥
∑
i∈[d]

fiyi,

yi = 0 ∀i ̸∈ M(x),

yi ∈ {0, 1} ∀i ∈ [d].

(⋆⋆)

Lemma 16.1. (⋆) holds if and only if there is y satisfying (⋆⋆).

Proof. (⇒) Suppose that t ≥ fℓ for some ℓ ∈ M(x). Then let y ∈ {0, 1}d be the vector with yℓ = 1
and yi = 0 for i ̸= ℓ. Then

∑
i∈[d] yi = 1 and

∑
i∈[d] fiyi = fℓ. Then (⋆⋆) is satisfied, as required.

(⇐) Suppose that a binary vector y satisfies (⋆⋆). Then there exists ℓ ∈ M(s) such that yℓ = 1 and
yi = 0 for i ̸= ℓ. This implies that t ≥ fℓ. Therefore, (⋆) is satisfied.

1



In the facility location example, M(x) was given by

M(x) = {i ∈ [d] : xi = 1} .

Thus yi = 0 for all i ̸∈ M(x) if and only if yi = 0 for all i ∈ [d] such that xi = 0. We imposed this
condition by the following constraints

yi ≤ xi, i ∈ [d].

In summary, the constraint t ≥ mini∈[d]: xi=1 fij from facility location can be equivalently formu-
lated as ∑

i∈[d]

yij = 1,

t ≥
∑
i∈[d]

fijyij ,

yij ≤ xi ∀i ∈ [d],

yij ∈ {0, 1} ∀i ∈ [d].

3 Modeling logical relationships with binary variables

Much of the applicability of integer programming comes from using binary variables to model log-
ical relationshipns between different sets of variables and constraints. There are some standard
techniques for doing this, which we go through.

• Products of binary variables.

• No-good constraints.

• Implication relationships.

• Big-M technique.

• Disjunctive constraint.

3.1 Product of binary variables

Let x = (x1, . . . , xd) ∈ {0, 1}d be a vector of binary variables with d ≥ 2, and let y ∈ {0, 1} be
a single binary variable. We wish to capture the constraint

y = x1 × x2 × · · · × xd.

Here, y = 1 holds if and only if xi = 1 for all i ∈ [d], and y = 0 holds if and only if xi = 0 for some
i ∈ [d]. Again, this constraint is not linear and is non-convex. How do we convert this into a set of
linear inequalities? As before, we can add

y ≤ xi, i ∈ [d].

With these constraints, we may force y = 0 whenever there exists i ∈ [d] with xi = 0. However, we
may still have y = 0 even when xi = 1 for all i ∈ [d]. Then how can we force y = 1 when xi = 1 for
all i ∈ [d]? The following constraint does it.

y ≥
∑
i∈[d]

xi − (d− 1).

2



Here, if xi = 1 for all i ∈ [d], then the right-hand side equals d − (d − 1) = 1, which forces y = 1.
On the other hand, when xi = 0 for some i ∈ [d], then the right-hand side is at most 0, in which
case the constraint is implied by y ∈ {0, 1}. In summary, y = x1 × x2 × · · · × xd holds if and only if

y ≤ xi ∀i ∈ [d], y ≥
∑
i∈[d]

xi − (d− 1).

3.2 No-good constraints

Let a = (a1, . . . , ad) ∈ {0, 1}d be a fixed binary vector, and let x = (x1, . . . , xd) ∈ {0, 1}d be a
vector of binary variables. We want to model the constraint

x ∈ {0, 1}d \ {a}.

In words, we want to prevent x from being equal to a. Let us consider the following constraint.∑
i∈[d]

(aixi + (1− ai)(1− xi)) ≤ d− 1.

Note that this is equivalent to ∑
i∈[d]

(1− 2ai)xi ≥ 1−
∑
i∈[d]

ai.

For example, when a = 0, the constraint becomes∑
i∈[d]

xi ≥ 1.

The constraint models x ̸= a. Why is that? Note that

aixi + (1− ai)(1− xi) =

{
1, if xi = ai,

0, if xi ̸= ai.

Moreover, ∑
i∈[d]

(aixi + (1− ai)(1− xi)) > d− 1

holds if and only if aixi + (1− ai)(1− xi) = 1 for all i ∈ [d]. Therefore, the constraint holds if and
only if there exists some i ∈ [d] such that xi ̸= ai.

3.3 Implication relationships

Suppose that we have two binary variables x, y ∈ {0, 1}. How can we model the implication
relationship as follows?

x = 1 ⇒ y = 1.

Another name for this is a forcing constraint, since whenever x = 1 we need to force y = 1. In
the facility location example, we saw that if yij = 1 (a station at i is selected by suburb j), then
we need to force xi = 1 (a station is located at i). We capture this with the linear constraint

x ≤ y.

3



3.4 Big-M technique for switching constraints on/off

Suppose that we have a linear constraint a⊤x ≤ b. We have a model where a⊤x ≤ b is imposed
only under certain conditions. How can we model switching the constraint on and off? We can
add a binary variable y ∈ {0, 1} and attempt to model the logical implications

y = 1 ⇒ a⊤x ≤ b

y = 0 ⇒ no constraint imposed

How can we linearize the two implications? Suppose that a⊤x will never be larger than b+M for
some sufficiently large M . Then we add constraint

a⊤x ≤ b+M(1− y).

The idea is that when y = 0, the constraint we impose is a⊤x ≤ b + M , which is redundant. In
most models, a sufficiently large M can be found. However, solver performance is better when M
is as small as possible.

4 Transportation with ramp-up costs

Suppose that we have production plants P , each of which can produce pi quantities of a certain
good. We have retailers R, which demand rj quantities of the good. Routes between plants and
retailers are given by a bipartite network (P ∪R,A) where A is the set of arcs connecting plants and
retailers. The problem is to transport the goods from plants to retailers in order to meet demands.

• We assume that transporting one unit from plant i to retailer j incurs cost cij .

• Deciding to produce goods at plat i incurs some ramp-up costs fi (warming up machines,
starting power, etc.).

• On the other hand, if no goods are produced at plant i, then no ramp-up costs are incurred.

Decisions: We use xij to decide the amount of goods transported from plant i to retailer j.
Moreover, we use variable yi to decide to use plant i or not.

yi =

{
1, if plant i produces goods

0, otherwise

Here, xij ≥ 0 for all i, j.

Objective: We want to minimize the total cost, which consists of the tranportation cost and the
ramp-up costs of plants. ∑

i∈P
fiyi +

∑
(i,j)∈A

cijxij .

Supply and demand constraints: We know that the production capacity of plant i is pi. Hence,
we impose ∑

j:(i,j)∈A

xij ≤ pi, i ∈ P.

Moreover, the demand of retailer j is rj . Hence,∑
i:(i,j)∈A

xij ≥ rj , j ∈ R.

4



Implication constraints: We need to consider how yi and xij interact. Note that if plant i is not
in operation, then it cannot produce any goods. We may model this by the following implication
constraints.

yi = 0 ⇒ xij = 0

yi = 1 ⇒ no constraint imposed

Following the previous discussion on the big-M technique, we may impose the constraint by

xij ≤ Myi, (i, j) ∈ A.

In fact, we may obtain a proper value for the constant M here. Recall that we have supply
constraints given by ∑

j:(i,j)∈A

xij ≤ pi, i ∈ P.

This implies that xij ≤ pi in any case. Therefore, we may set M = pi. As a result,

xij ≤ piyi, (i, j) ∈ A.

In fact, we may aggregate these constraints for a fixed i to deduce∑
j:(i,j)∈A

xij ≤ piyi, i ∈ P.

Therefore, the optimization model for the transportation problem is given by

min
∑
i∈P

fiyi +
∑

(i,j)∈A

cijxij

s.t.
∑

i:(i,j)∈A

xij ≥ rj , j ∈ R

∑
j:(i,j)∈A

xij ≤ piyi, i ∈ P

x ≥ 0, y ∈ {0, 1}P .

5


	Outline
	Facility location recap
	Modeling logical relationships with binary variables
	Product of binary variables
	No-good constraints
	Implication relationships
	Big-M technique for switching constraints on/off

	Transportation with ramp-up costs

