
IE 331 OR: Optimization KAIST, Spring 2023
Lecture #15: Integer programming I April 25, 2023
Lecturer: Dabeen Lee

1 Outline

In this lecture, we cover

• introduction to integer programming,

• hardness of integer programming,

• modeling categorical decisions,

• facility location.

2 Integer programming models

An integer linear program (or simply integer program (IP)) is simply a linear program with
additional constraints that some variables must take integer values only:

min c⊤x

s.t. Ax ≤ b

xj ∈ Z, j ∈ D

where D ⊆ [d] is the index set of variables required to be integers.

• When all variables are required to be integers, i.e., D = [d], then we say that it is a pure
integer program.

• When some variables are integers and others are continuous, we say that the problem
is a mixed integer program (MIP).

• Note that xj ∈ Z and 0 ≤ xj ≤ 1 means xj ∈ {0, 1}.

• When all integer variables are in {0, 1}, we say that the problem is a 0-1 program or a
binary program.

The optimization model without the integrality constraints, given by

min c⊤x

s.t. Ax ≤ b

is called the linear programming relaxation or the LP relaxation of the integer program.

1

3 Hardness of integer programming

Let us consider a toy example. First, the following is a simple integer linear program with two
variables.

max 4x+ 5y

s.t. x+ 3y ≤ 10,

3x+ y ≤ 10,

x, y ≥ 0,

(x, y) ∈ Z2.

We can draw the feasible region of the LP relaxation as in Figure 15.1. The red dots depict the

Figure 15.1: Depicting the feasible region of the linear and integer programs

set of solutions that satisfy the linear inequalities and the integrality condition, so the set of red
dots is the set of feasible solutions to the integer program.

By solving the LP relaxation, we know that the optimal solution is (x, y) = (5/2, 5/2) which is at
the intersection of two lines x+ 3y = 10 and 3x+ y = 10.

What is an optimal solution to the integer program? The first attempt is to look at the optimal
solution to the linear program, which is (5/2, 5/2), and round the components to the nearest
integers. However, there are a couple of issues with the rounding procedure.

1. There can be many integer solutions obtained from rounding the optimal solution to the linear
program. We may round 5/2 to 2 or 3. Hence, (2, 2), (2, 3), (3, 2), and (3, 3) may be obtained
from rounding (5/2, 5/2). When the number of variables is d, the number of solutions from
rounding is up to 2d.

2. We cannot guarantee the feasibility of solutions obtained from rounding. (2, 2) is feasible,
but (2, 3), (3, 2), and (3, 3) are all infeasible.

3. More importantly, it is not always the case that there is an optimal solution from the list of
solutions obtained from rounding. In fact, the optimal solution to the our integer program is
given by (1, 3).

Therefore, linear programming combined with rounding does not necessary solve integer program-
ming. It turns out that integer programming is NP -hard, which implies that there would be no
polynomial time algorithm unless P = NP .

2

Integer programming includes difficult problems in computer science such as Satisfiability and
the Traveling Salesman Problem (TSP). Furthermore, linear programming is a class of convex
optimization, while the set of solutions to a integer program is discrete and thus non-convex.
These computational challenges require methodologies that deal with the discrete nature of integer
programming, which has motivated an extensive research on integer programming both in theory
and practice.

There are two main techniques used to solve integer programming models (mostly in combination).

Branch-and-bound (divide and conquer). For the example, as x ∈ Z, we know that x ≤ 2 or
x ≥ 3. Then we solve two separate linear programs with constraints x ≤ 2 and x ≥ 3, respectively.

max 4x+ 5y
s.t. x+ 3y ≤ 10,

3x+ y ≤ 10,
x, y ≥ 0,
x ≤ 2
y ∈ Z.

and

max 4x+ 5y
s.t. x+ 3y ≤ 10,

3x+ y ≤ 10,
x, y ≥ 0,
x ≥ 3
y ∈ Z.

If these still do not return integer solutions, divide further as necessary, while using past information
to eliminate certain linear programs from contention.

Cutting plane methods. Generate constraints in a clever way to force integrality. This also
requires repeatedly solving linear programs.

Figure 15.2: Applying a cutting-plane

These techniques are outside the scope of this course but are important in optimization and oper-
ations research.

4 Modeling categorical decisions

An important setting where linear programming comes up short is when we have categorical
decisions. We may use integer programming to deal with situations where we choose among a
finite set of alternatives, e.g. Yes/No, a set of locations, a set of finite actions. Note that the
alternatives need not even be quantitative.

• Non-quantitative decision: which brand should I stock?

• Quantitative decision: how many items should I stock?

At the same time, we still need to be able to quantify the effects of the choices.

3

• If I choose this brand, then I will make on average $2000 more profit.

• If I go with this other brand, I have to use two more shelves of storage space.

Suppose that we have to select between d different alternatives. We define d variables x1, . . . , xd
for the alternatives. Here, we impose that xj ∈ {0, 1} for j = 1, . . . , d. Then we may model the
situation where

xj =

{
1, we choose option j,

0, we do not choose option j.

Next, we add constraint
∑

j∈[d] xj = 1. Then this requires that exactly one of the d alternatives is
chosen. Instead of this constraint, we may change the right-hand side as follows.

•
∑

j∈[d] xj = k means we select exactly k of the alternatives.

•
∑

j∈[d] xj ≤ k means we select at most k of the alternatives.

•
∑

j∈[d] xj ≥ k means we select at least k of the alternatives.

5 Facility location

Suppose that we have d different suburbs. We want to select k of these to be locations for fire
stations.

Categorical decisions: xj for each j ∈ [d] binary variables,

xj =

{
1, a fire station is located in suburb j,

0, no fire station in suburb j.

Constraints: choose exactly k suburbs ∑
j∈[d]

xj = k.

Objective: minimize the largest distance between a suburb and its closest first station. Here,
fij is the distance between suburbs i and j. Note that the distance between j and its closest first
station is

min
i: xi=1

fij

Then the largest distance between a suburb and its closest first station is

max
j∈[d]

min
i: xi=1

fij

Therefore, the objective is
min max

j∈[d]
min

i: xi=1
fij︸ ︷︷ ︸

distance between j and
its closest fire station

We can rewrite

max
j∈[d]

min
i: xi=1

fij = min

{
t : t ≥ min

i: xi=1
fij , ∀j ∈ [d]

}
4

Hence, the optimization problem is

min t

s.t. t ≥ min
i: xi=1

fij , ∀j ∈ [d]

However, constraint t ≥ mini: xi=1 fij is not linear. Here, the trick is to think of mini: xi=1 fij as
another selection: for each j ∈ [d], we select the station with the smallest distance. More precisely,
we add binary variable yij ∈ {0, 1} to model the selection. For each i, j ∈ [d],

yij =

{
1, a fire station in suburb i is selected by suburb j,

0, no fire station in i is selected by j.

We make sure that only one fire station is assigned to each suburb.∑
i∈[d]

yij = 1.

Moreover, we add constraints to ensure that only the suburbs with fire stations can be selected. In
other words, if xi = 0, then yij = 0. This can be modeled by

yij ≤ xij .

Then the objective is now

max
j∈[d]

∑
i∈[d]

fijyij = min

t : t ≥
∑
i∈[d]

fijyij , ∀j ∈ [d]

 .

Finally, we deduce the following model.

min t

s.t. x ∈ {0, 1}d, y ∈ {0, 1}d×d, t ∈ R∑
j∈[d]

xj = k

∑
i∈[d]

yij = 1, j ∈ [d]

yij ≤ xi, i, j ∈ [d]

t ≥
∑
i∈[d]

fijyij , j ∈ [d]

Note that we are not explicitly enforcing that yij = 1 when i gives rise to the smallest distance dij
among those with xi = 1. Nevertheles, the minimizing objective will select the best one for us.

5

	Outline
	Integer programming models
	Hardness of integer programming
	Modeling categorical decisions
	Facility location

