1 Outline

In this lecture, we cover

- the maximum st-flow problem,
- bipartite matching.

2 Maximum st-flow

The minimum cost flow model we learned does not have a designated source or a sink. In this section, we discuss a network flow model with a sink node and a source node. Let s and t be the source node and the sink node, respectively. The source node s sends flows, and the sink node receives the flows sent by the source. The other nodes are transhipment node, meaning that the othder nodes have 0 net supply. Each arc in the given network has an upper bound on the amount of flowws that it can take, i.e.

$$
0 \leq x_{i j} \leq c_{i j}, \quad(i, j) \in A
$$

Then the problem is to compute the maximum amount of flows that the source node s can send to the sink node t while obeying the flow capacities of arcs.

Figure 14.1: Sending flow from s to t

Although this problem seems different from the minimum cost flow problem, we may formulate the problem as a min cost flow model. The common trick is to add a dummy arc from the sink node t to the source node s. This dummy arc (t, s) sends back all the flows coming from s to t. Basically, we impose that

$$
x_{t s}=\underbrace{\sum_{k \in N:(k, t) \in A} x_{k t} \sum_{j \in N:(t, j) \in A} x_{t j}}_{\text {the net amount of flows into } t}
$$

Moreover, $A^{\prime}=A \cup\{(t, s)\}$ is the arc set of the new network obtained after adding the dummy arc
(t, s). Then

$$
\begin{aligned}
0 & =x_{t s}+\sum_{j \in N:(t, j) \in A} x_{t j}-\sum_{k \in N:(k, t) \in A} x_{k t} \\
& =\underbrace{\sum_{j \in N:(t, j) \in A^{\prime}} x_{t j}-\sum_{k \in N:(k, t) \in A^{\prime}} x_{k t}}_{\text {the net amount of flows into } t \text { in the new network }} .
\end{aligned}
$$

Furthermore, the amount of flows that the sink node t receives is equal to the amount of flows that the source node s sends out. Hence, we have

$$
\underbrace{\sum_{j \in N:(s, j) \in A} x_{s j}-\sum_{k \in N:(k, s) \in A} x_{k s}}_{\text {the net amount of flows out of } s}=\sum_{k \in N:(k, t) \in A} x_{k t}-\sum_{j \in N:(t, j) \in A} x_{t j}=x_{t s}
$$

Then it follows that

$$
\begin{aligned}
0 & =\sum_{j \in N:(s, j) \in A} x_{s j}-\sum_{k \in N:(k, s) \in A} x_{k s}-x_{t s} \\
& =\underbrace{\sum_{j \in N:(s, j) \in A^{\prime}} x_{s j}-\sum_{k \in N:(k, s) \in A^{\prime}} x_{k s}}_{\text {the net amount of flows out of } s \text { in the new network }} .
\end{aligned}
$$

The other nodes in the network are transhipment nodes and are not connected to the dummay arc (t, s), so we have

$$
\sum_{j \in N:(i, j) \in A^{\prime}} x_{i j}-\sum_{k \in N:(k, i) \in A^{\prime}} x_{k i}=0, \quad i \in N \backslash\{s, t\} .
$$

Then the problem can be formulated as

$$
\begin{array}{cl}
\max & x_{t s} \\
\text { s.t. } & \sum^{j \in N:(i, j) \in A \cup\{(t, s)\}} x_{i j}-\sum_{k \in N:(k, i) \in A \cup\{(t, s)\}} x_{k i}=0, \quad \forall i \in N \\
& 0 \leq x_{i j} \leq c_{i j}, \quad \forall(i, j) \in A .
\end{array}
$$

Observe that the dummy arc $x_{t s}$ is a free variable, which is equivalent to $-\infty \leq x_{t s} \leq+\infty$. As this formulation is an instance of the minimum cost flow model, it returns an integer flow as long as the capacities $c_{i j}$ for $(i, j) \in A$ are integers.

3 Bipartite matching

A bipartite graph is a graph $G=(V, E)$ where

- the vertex set V is partitioned into two sets V_{1} and V_{2},
- each edge $e \in E$ crosses the partition, i.e. e has one end in V_{1} and the other end in V_{2}.

For example, Figure 14.2 shows a bipartite graph on 7 vertices where one set contains 3 and the other has 4. A matching is a set of edges without common vertices. In Figure 14.2, the set of

Figure 14.2: Bipartite graph and a matching
green edges gives rise to a matching. The matching problem is to find a matching that has the maximum number of edges.
The first approach is to reduce bipartite matching to maximum st-flow. Given a bipartite graph $G=(V, E)$ with V partitioned into V_{1} and V_{2}, we run the following transformation procedure.

- Add a source node s and a sink node t.
- Add arcs from s to all vertices in $V_{1}:\left\{(s, u): u \in V_{1}\right\}$.
- Add arcs to t from all vertices in $V_{2}:\left\{(v, t): v \in V_{2}\right\}$.
- Direct every edge (u, v) where $u \in V_{1}$ and $v \in V_{2}$ so that (u, v) becomes an arc from u to v.
- Set the flow upper bound $c_{u v}$ of every arc (u, v) to 1 .

Figure 14.3: Reducing a bipartite graph to a flow newtwork

Then the following linear program computes a maximum $s t$-flow over the above network.

$$
\begin{array}{ll}
\max & \sum_{u \in V_{1}} x_{s u} \\
\text { s.t. } & \sum_{v \in V_{2}:(u, v) \in E} x_{u v}-x_{s u}=0, \quad u \in V_{1} \\
& x_{v t}-\sum_{u \in V_{1}:(u, v) \in E} x_{u v}=0, \quad v \in V_{2} \\
& 0 \leq x_{s u}, x_{v t}, x_{u v} \leq 1, \quad(u, v) \in E
\end{array}
$$

In particular, there is an optimal solution x^{*} that has integer entries only. As each component of x^{*} is between 0 and 1 , we may select

$$
M=\left\{(u, v) \in E: x_{u v}^{*}=1\right\} .
$$

Note that

$$
\sum_{v \in V_{2}:(u, v) \in E} x_{u v}^{*}=x_{s u}^{*} \leq 1
$$

Therefore, u is connected to at most one edge in M. Similarly,

$$
\sum_{u \in V_{1}:(u, v) \in E} x_{u v}^{*}=x_{v t}^{*} \leq 1 .
$$

Therefore, v is connected to at most one edge in M. This implies that M is a matching. In fact, $|M|$ is the size of the matching, and moreover,

$$
|M|=\sum_{u \in V_{1}} x_{u v}^{*}
$$

This implies that we have just solved bipartite matching by maximum st-flow.

