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1 Outline

In this lecture, we cover

e the maximum st-flow problem,

e bipartite matching.

2 Maximum st-flow

The minimum cost flow model we learned does not have a designated source or a sink. In this
section, we discuss a network flow model with a sink node and a source node. Let s and ¢t be
the source node and the sink node, respectively. The source node s sends flows, and the sink node
receives the flows sent by the source. The other nodes are transhipment node, meaning that the
othder nodes have 0 net supply. Each arc in the given network has an upper bound on the amount
of flowws that it can take, i.e.

ngzj < ¢y, (Z,j)EA

Then the problem is to compute the maximum amount of flows that the source node s can send to
the sink node ¢t while obeying the flow capacities of arcs.
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Figure 14.1: Sending flow from s to ¢

Although this problem seems different from the minimum cost flow problem, we may formulate the
problem as a min cost flow model. The common trick is to add a dummy arc from the sink node ¢
to the source node s. This dummy arc (¢, s) sends back all the flows coming from s to ¢. Basically,

we impose that
Tis = Z Tht — Z Ltj -
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the net amount of flows into ¢

Moreover, A" = AU{(t, s)} is the arc set of the new network obtained after adding the dummy arc



(t,s). Then

0=z + Z Ttj — Z Tt
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the net amount of flows into ¢ in the new network

Furthermore, the amount of flows that the sink node ¢ receives is equal to the amount of flows that
the source node s sends out. Hence, we have

2. wi— D, ww= ), amw— ), wmj=wn

JEN:(s,j)EA keN:(k,s)€A kEN:(k,t)eA JEN:(t,5)€A

the net amount of flows out of s

Then it follows that

0= Z Lgj — Z Lis — Lts

JEN:(s,5)€A kEN:(k,s)€A
= Z Tsj — 5 Tis
JEN:(s,j)€A! keN:(k,s)cA’

~
the net amount of flows out of s in the new network

The other nodes in the network are transhipment nodes and are not connected to the dummay arc

(t,s), so we have
Z Tij — Z T =0, 1€ N\ {st}.

JEN:(if)eA’ REN:(ki)eA!

Then the problem can be formulated as

max Tyg

s.t. Z Tij — Z =0, VieN

JEN:(4,5)€AU{(t,s)} keN:(ki)e AU{(t,s)}
0<a; < Cij, \V/(Z,]) € A.

Observe that the dummy arc x4 is a free variable, which is equivalent to —oco < zs < 400. As
this formulation is an instance of the minimum cost flow model, it returns an integer flow as long
as the capacities ¢;; for (4,j) € A are integers.

3 Bipartite matching
A bipartite graph is a graph G = (V, E) where
e the vertex set V is partitioned into two sets V1 and V5,

e cach edge e € F crosses the partition, i.e. e has one end in V; and the other end in V5.

For example, Figure 14.2 shows a bipartite graph on 7 vertices where one set contains 3 and the
other has 4. A matching is a set of edges without common vertices. In Figure 14.2, the set of
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Figure 14.2: Bipartite graph and a matching

green edges gives rise to a matching. The matching problem is to find a matching that has the
maximum number of edges.

The first approach is to reduce bipartite matching to maximum st-flow. Given a bipartite graph
G = (V, E) with V partitioned into V; and Vs, we run the following transformation procedure.

e Add a source node s and a sink node ¢.
e Add arcs from s to all vertices in Vi: {(s,u) : u € Vi}.

e Add arcs to t from all vertices in Va: {(v,t) : v € Va}.

Direct every edge (u,v) where v € V; and v € V5 so that (u,v) becomes an arc from u to v.

Set the flow upper bound ¢, of every arc (u,v) to 1.
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Figure 14.3: Reducing a bipartite graph to a flow newtwork



Then the following linear program computes a maximum st-flow over the above network.

max E Ty

ueVy

s.t. Z Typ — Tsy =0, uw €V
vEVa:(u,v)EE
Lyt — Z Tyv = 07 v e VQ

ueVi:(u,w)EE
0< Tsuy Loty Luv < ]-7 (U7U) S

In particular, there is an optimal solution z* that has integer entries only. As each component of
z* is between 0 and 1, we may select

M ={(u,v) € E: x;,=1}.
Note that

veVa:(u,v)EE

Therefore, u is connected to at most one edge in M. Similarly,

ueVi:(uv)eERE

Therefore, v is connected to at most one edge in M. This implies that M is a matching. In fact,
| M| is the size of the matching, and moreover,

(M| =" .
ueVy

This implies that we have just solved bipartite matching by maximum st-flow.
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