
IE 331 OR: Optimization KAIST, Spring 2023
Lecture #10: Solving large-scale linear programming models March 30, 2023
Lecturer: Dabeen Lee

1 Outline

In this lecture, we cover

• complementary slackness,

• row and column generation frameworks for large-scale linear programming models,

• the cutting stock problem.

2 Complementary slackness

Strong duality says that if primal and dual are feasible, then their optimal values coincide. Let x
and λ be feasible solutions to the primal LP and the dual LP, respectively, such that

c⊤x = b⊤λ.

From our derivations, we have

b⊤λ =
∑
i∈ML

biλi +
∑
i∈ME

biλi +
∑
i∈MG

biλi

≤
∑
i∈ML

λia
⊤
i x+

∑
i∈ME

λia
⊤
i x+

∑
i∈MG

λia
⊤
i x

=
∑
j∈DL

(ã⊤j λ)xj +
∑
j∈DF

(ã⊤j λ)xj +
∑
j∈DG

(ã⊤j λ)xj

≤
∑
j∈DL

cjxj +
∑
j∈DF

cjxj +
∑
j∈DG

cjxj

= c⊤x.

Since b⊤λ = c⊤x, the inequalities hold with equality throughout. From the first equality, we have

0 =
∑
i∈ML

λi(a
⊤
i x− bi) +

∑
i∈ME

λi(a
⊤
i x− bi) +

∑
i∈MG

λi(a
⊤
i x− bi).

Recall that
(a⊤i x− bi)λi ≥ 0

for every i. Therefore, we must have

(a⊤i x− bi)λi = 0 ∀i ∈ML ∪ME ∪MG.

From the second equality,

0 =
∑
j∈DL

(ã⊤j λ− cj)xj +
∑
j∈DF

(ã⊤j λ− cj)xj +
∑
j∈DG

(ã⊤j λ− cj)xj .

As for the first equality, we deduce that

(ã⊤j λ− cj)xj = 0 ∀j ∈ DL ∪DF ∪DG.

1



Theorem 10.1 (Complementary slackness). Let x be an optimal solution to the primal LP, and
let λ be an optimal solution to the dual LP. Then the following statements hold.

• If a⊤i x ̸= bi, then λi = 0.

• If λi ̸= 0, then a⊤i x = bi.

Moreover,

• If ã⊤j λi ̸= cj, then xj = 0.

• If xj ̸= 0, then ã⊤j λ ̸= cj.

In words, at optimality,

• primal constraint i and dual variable i cannot be slack simultaneously,

• primal variable j and dual constraint j cannot be slack simultaneously.

3 Large-scale linear programming models

Consider a linear program and its dual as follows.

p∗ = min c⊤x
s.t. Ax ≥ b

x ≥ 0

d∗ = max b⊤λ
s.t A⊤λ ≤ c

λ ≥ 0

where A is an m × d matrix. Depending on applications, we may have to deal with extremely
large linear programs. We may have

• a large number of primal constraints m (i.e., dual variables),

• a large number of primal variables d (i.e., dual constraints).

We will consider the case where m or d is large but not both. Throughout this section, we focus
on the case when p∗ is finite. Then by strong duality, d∗ is also finite.

3.1 Large m: primal row generation

When m is large, we have a large number of constraints. Then, instead of solving with the entire
set of m constraints, we we may start with a subset of constraints, add necessary constraints later,
and re-solve updated problems iteratively. More precisely, we consider

pM = min c⊤x

s.t. a⊤i x ≥ bi, i ∈M

x ≥ 0

where M is a subset of [m]. This linear program is called the master problem. The basic outline
is as follows.

1. Solve the master problem and obtain an optimal solution xM .

2



2. Check whether there is a constraint a⊤i x ≥ bi among i ∈ [m] \M that xM violates.

3. If a⊤i xM < bi for some i ∈ [m] \M , then add constraint a⊤i x ≥ bi to the master problem.

4. Repeat this procedure.

This procedure is called (primal) row generation. It is also known as constraint generation
or the cutting plane method. What follows is a more detailed pseudo-code.

Algorithm 1 Row generation framework

Initialize M ⊆ [m] such that the master problem has a finite optimum.
Set S = −∞.
while S < 0 do

Solve the master problem

pM = min c⊤x

s.t. a⊤i x ≥ bi, i ∈M

x ≥ 0

Optimal an optimal solution xM to the master problem.
Solve the subproblem

S = min
i∈[m]

{
a⊤i xM − bi

}
.

M ←M ∪ {i∗} where i∗ ∈ argmini∈[m]

{
a⊤i xM − bi

}
.

end while
Return xM as an optimal solution to the original linear program.

3.2 Large d: row generation in the dual = primal column generation

When d is large, then the linear program has a large number of variables, in which case, its dual
has a large number of constraints. Then we may apply the row generation framework to the dual
linear program. Recall that the dual linear program is given by

d∗ = max b⊤λ

s.t. ã⊤j λ ≤ cj , j ∈ [d]

λ ≥ 0

where ã1, . . . , ãd are the columns of the constraint matrix A. Then to apply the row generation
framework to the dual, we start with a subset D ⊆ [d]. Consider the corresponding master problem
as follows.

dD = max b⊤λ

s.t. ã⊤j λ ≤ cj , j ∈ D

λ ≥ 0.

3



We call this the dual master problem. Let us take the dual of the dual master problem.

pD = min
∑
j∈D

cjxj

s.t.
∑
j∈D

ãjxj ≥ bi

xj ≥ 0, j ∈ D.

Note that the primal linear program can be written as

p∗ = min
∑
j∈D

cjxj +
∑

j∈[d]\D

cjxj

s.t.
∑
j∈D

ãjxj +
∑

j∈[d]\D

ãjxj ≥ bi

xj ≥ 0, j ∈ D

xj ≥ 0, j ∈ [d] \D.

Here, the dual of the dual master problem is euivalent to what is obtained from the primal linear
program after setting xj = 0 for j ̸∈ D. Therefore, adding a row to the dual master problem
is equivalent to adding a variable/column to the primal problem. Hence, this procedure of row
generation in the dual is called column generation.

Algorithm 2 Column generation framework

Initialize D ⊆ [d] such that the dual master problem has a finite optimum
Set S = +∞.
while S > 0 do

Solve the dual master problem

dD = max b⊤λ

s.t. ã⊤j λ ≤ cj , j ∈ D

λ ≥ 0.

Optimal an optimal solution λD to the master problem.
Solve the subproblem

S = max
j∈[d]

{
ã⊤j λ

D − cj

}
.

D ← D ∪ {j∗} where j∗ ∈ argmaxj∈[d]

{
ã⊤j λ

D − cj

}
.

end while
Solve the primal linear program with columns ãj for j ∈ D and return an optimal solution.

The column generation framework will solve the dual linear program. Hence, at termination, we
would end up with a subset D ⊆ [d] such that dD = d∗. By strong duality, we have

pD = dD = d∗ = p∗.

Therefore, solving the primal linear program with columns ãj for j ∈ D would in turn solve the
primal linear program.

4



4 Cutting stock problem

A steel mill manages steel plate production lines. Each line can produce large steel plate of width
W . The steel mill receives orders of different widths. Suppose that there are m different orders of
width values w1, . . . , wm. Assume also that the number of orders for width wi is bi for i ∈ [m]. Upon
receiving these orders, the steel mill decides how to allocate the production orders over production
lines. Basically, a steel plate of width W from a production line can be cut into multiple plates of
different widths. Here, the steel mill wants to run as few production lines as possible.

To model this problem, we use the idea of cutting patterns. The basic idea is as follows. A
cutting pattern determines how to cut a steel plate of width W into pieces of different widths. A
cutting pattern can be represented as a vector s ∈ Zm

+ where si represents the number of pieces of
width wi. To make sure that si pieces of width wi for i ∈ [m] can be produced from a steel plate
of width W , we impose a knapsack constraint as follows.

m∑
i=1

wisi ≤W.

Then the set of nonnegative integer vectors satisfying the knapsack constraint, given by

S =

{
s ∈ Zm

+ :
m∑
i=1

wisi ≤W

}
collects all possible cutting patterns. Essentially, using a cutting pattern is equivalent to operating
a production line.

Let xs denote the number of production lines that produce cutting pattern s. Then∑
s∈S

xs

is the total number of production lines in use. Moreover,∑
s∈S

sixs

is equal to the total number of pieces of width wi. Then the problem can be formulated as

min
∑
s∈S

xs

s.t.
∑
s∈S

sixs ≥ bi, ∀i ∈ [m],

xs ∈ Z+, ∀s ∈ S.

Here, the issue with this integer program is that the number of variables is equal to the number of
all possible cutting patterns. However, the number of possible patterns is the number of points in
S, which can be huge depending on the problem parameters. Instead of enumerating all cutting
patterns, we use column generation.

First, we replace the integrality constraint by x ≥ 0, and as a result, we obtain a linear program.

min
∑
s∈S

xs

s.t.
∑
s∈S

sixs ≥ bi, ∀i ∈ [m],

xs ≥ 0, ∀s ∈ S.

5



Then we take its dual given by

max
∑
i∈[m]

λi

s.t.
∑
i∈[m]

siλi ≤ 1, ∀s ∈ S

λi ≥ 0, ∀i ∈ [m].

The column generation framework starts with a subset F ⊆ S of the cutting patterns. Then we
solve

min
∑
s∈F

xs

s.t.
∑
s∈F

sixs ≥ bi, ∀i ∈ [m],

xs ∈ Z+, ∀s ∈ F .

This is an integer program, while solving which we may obtain the corresponding dual multipliers
λ. Then to apply the column generation framework, we solve the corresponding subproblem

max

−1 + ∑
i∈[m]

λisi : s ∈ S

 .

By plugging in the definition of S, the subproblem is equivalent to

max − 1 +
∑
i∈[m]

λisi

s.t.
∑
i∈[m]

wisi ≤W

s ∈ Zm
+ .

This problem is an instance of the (unbounded) knapsack problem.

6


	Outline
	Complementary slackness
	Large-scale linear programming models
	Large m: primal row generation
	Large d: row generation in the dual = primal column generation

	Cutting stock problem

