IE 331 Operations Research: Optimization Assignment 3

Spring 2023

Out: 27th April 2023

Due: 16th May 2023 at 11:59pm

Instructions

- Submit a PDF document with your solutions through the assignment portal on KLMS by the due date. Please ensure that your name and student ID are on the front page.
- Late assignments will be subject to a penalty. Special consideration should be applied for in this case.
- It is required that you typeset your solutions in LaTeX. Handwritten solutions will not be accepted.
- Spend some time ensuring your arguments are coherent and your solutions clearly communicate your ideas.

Question:	1	2	3	4	Total
Points:	20	10	30	40	100

1. Let $D=(N, A)$ be a network with two distinct nodes s and t. Suppose that $c_{i j} \geq 0$ for $(i, j) \in A$. Consider the following linear program.

$$
\begin{array}{ll}
\min & \sum_{(i, j) \in A} c_{i j} z_{i j} \\
\text { s.t. } & y_{i}-y_{j}+z_{i j} \geq 0, \quad(i, j) \in A \tag{1}\\
& y_{t}-y_{s}=1 \\
& z_{i j} \geq 0, \quad(i, j) \in A
\end{array}
$$

(a) (10 points) Prove that linear program (1) is the dual of the linear programming formulation for the maximum st-flow problem over network $D=(N, A)$.
(b) (10 points) Use part (a) to prove that (1) has an optimal solution that has integer entries only.
2. (10 points) Let $a=\left(a_{1}, \ldots, a_{d}\right) \in\{0,1\}^{d} \backslash\{0\}$ be a fixed nonzero binary vector, and $x=\left(x_{1}, \ldots, x_{d}\right) \in$ $\{0,1\}^{d}$ be a vector of binary variables. Then formulate the constraint which prevents $x \geq a$ (i.e., we want to ensure that there is at least on j such that $x_{j}=0$ and $a_{j}=1$.)
3. Let $x, y \in\{0,1\}$ be two binary variables.
(a) (10 points) Model implication

$$
x=0 \quad \Rightarrow y=1
$$

(b) (10 points) Model implication

$$
x=1 \quad \Rightarrow y=0
$$

(c) (10 points) Model implication

$$
x=0 \quad \Rightarrow y=0
$$

4. (40 points) Use Gurobi to solve the transportation problem with ramp-up costs with the following model parameters.

	Coordinates	Ramp-up costs	Production capacities
Plant 1	$(0,1.5)$	11	70
Plant 2	$(2.5,1.2)$	100	60
Plant 3	$(1.7,2.3)$	9	60
Plant 4	$(0.7,1.8)$	7	50

	Coordinates	Demands
Retailer 1	$(0,0)$	20
Retailer 2	$(0,1)$	20
Retailer 3	$(0,2)$	20
Retailer 4	$(1,0)$	20
Retailer 5	$(1,1)$	20
Retailer 6	$(1,2)$	20
Retailer 7	$(2,0)$	20
Retailer 8	$(2,1)$	20
Retailer 9	$(2,2)$	20

(a) Report the optimal value (Best objective).
(b) Report the set of plants in operation according to the optimal solution.

