IE 331 Operations Research: Optimization Assignment 1

Spring2023

Out: 14th March 2023

Due: 28th March 2022 at 11:59pm

Instructions

- Submit a PDF document with your solutions through the assignment portal on KLMS by the due date. Please ensure that your name and student ID are on the front page.
- Late assignments will be subject to a penalty. Special consideration should be applied for in this case.
- It is required that you typeset your solutions in LaTeX. Handwritten solutions will not be accepted.
- Spend some time ensuring your arguments are coherent and your solutions clearly communicate your ideas.

Question:	1	2	3	4	Total
Points:	10	40	50	0	100

1. (10 points) Prove that $f\left(x_{1}, x_{2}, x_{3}\right)=\max \left\{3 x_{1}-x_{2}, 2 \max \left\{x_{2}, 4 x_{2}-3 x_{1}\right\}-x_{1}\right\}-4 x_{1}+x_{2}$ is linearly representable by representing its epigraph with a finite system of linear inequalities.
2. Remember the problem of finding a center point of a cluster from Lecture 3. There is a cluster of points $V=\left\{v^{1}, \ldots, v^{n}\right\} \subseteq \mathbb{R}^{d}$. Given a point $x \in \mathbb{R}^{d}$, the distance between x and the cluster V is measured by some distance function $d: \mathbb{R}^{d} \rightarrow \mathbb{R}_{+}$. Then we determine the center of a cluster by solving the following optimization problem.

$$
\min _{x} \quad d(x)
$$

(a) (10 points) The distance function is given by the sum of the ℓ_{1}-distance between x and individual vector v^{i} for $i \in[n]$.

$$
d(x)=\sum_{i \in[n]}\left\|x-v^{i}\right\|_{1}
$$

Represent the optimization problem as a linear program.
(b) (10 points) The distance function is given by the sum of the ℓ_{∞}-distance between x and individual vector v^{i} for $i \in[n]$.

$$
d(x)=\sum_{i \in[n]}\left\|x-v^{i}\right\|_{\infty}
$$

Represent the optimization problem as a linear program.
(c) (10 points) The distance function is given by the maximum ℓ_{1}-distance between x and individual vector v^{i} for $i \in[n]$.

$$
d(x)=\max _{i \in[n]}\left\|x-v^{i}\right\|_{1}
$$

Represent the optimization problem as a linear program.
(d) (10 points) The distance function is given by the maximum ℓ_{∞}-distance between x and individual vector v^{i} for $i \in[n]$.

$$
d(x)=\max _{i \in[n]}\left\|x-v^{i}\right\|_{\infty}
$$

Represent the optimization problem as a linear program.
3. (50 points) Write your solutions in LaTeX.

Overleaf website: https://www.overleaf.com

```
documentclass{article}
\usepackage{graphicx} % Required for inserting images
\title{IE331 Assignment 1}
\author{Dabeen Lee}
\date{\today}
\usepackage{amsmath, amssymb}
\begin{document}
\maketitle
\begin{enumerate}
    \item My answer to question 1 is ...
    $$\text{ep.i}(f) = \left\{(x,t)\in\mathbb{R}^d\times\mathbb{R}:\\exists y\in\mathbb{R}^p\text{ s.t. } Ax + Dy + h t \leq r \right\}$$
    \item \begin{enumerate}
            \item My answer to question 2(a) is ...
            \begin{align*}
    \min\quad & f(x)\\
    \text{s.t.}\quad & g_i(x)\leq b_i,\quad i\in[m],\\
    &x\in\mathbb{R\mp@subsup{}}{}{\wedge}d.
\end{align*}
            \item My answer to question 2(b) is ...
                $$d(x)=\sum_{i\in[n]}\left\\x-v^i\right\\_\infty.$$
            \item My answer to question 2(c) is ...
                $$d(x)=\sum_{i\in[n]}\left\|x-v^i\right\|_1.$$
            \item My answer to question 2(d) is ...
    \end{enumerate}
\end{enumerate}
\end{document}
|
```


IE331 Assignment 1

Dabeen Lee

March 14, 2023

1. My answer to question 1 is ...

$$
\operatorname{epi}(f)=\left\{(x, t) \in \mathbb{R}^{d} \times \mathbb{R}: \exists y \in \mathbb{R}^{p} \text { s.t. } A x+D y+h t \leq r\right\}
$$

2. (a) My answer to question 2(a) is ...

$$
\begin{aligned}
\min & f(x) \\
\text { s.t. } & g_{i}(x) \leq b_{i}, \quad i \in[m], \\
& x \in \mathbb{R}^{d} .
\end{aligned}
$$

(b) My answer to question 2(b) is ...

$$
d(x)=\sum_{i \in[n]}\left\|x-v^{i}\right\|_{\infty}
$$

(c) My answer to question 2(c) is ...

$$
d(x)=\sum_{i \in[n]}\left\|x-v^{i}\right\|_{1} .
$$

(d) My answer to question 2(d) is ...
4. (0 points) Download and Install Gurobi and Python. We will ask you to solve optimization models with Gurobi in future assignments.
Gurobi website: https://www.gurobi.com

1. Register via your KAIST email address.

				documentation		DOWNLOADS \& LICENSES	SUPPORT	MY Account	
GUROBI OPTIMIZATION	Solutions	Resources \checkmark	Partners \vee	Academic ${ }^{\sim}$					Q

2. Obtain an academic license (DOWNLOADS \& LICENSES \rightarrow Your Gurobi Licenses \rightarrow Request \rightarrow Named-User Academic)

3. Download Gurobi Optimizer v10.0.1 (DOWNLOADS \& LICENSES \rightarrow Download Center \rightarrow Gurobi Optimizer)
4. We will use Gurobi's Python API. Setup Jupyter Notebook. You may have to download the linux version or the MacOS version of Gurobi.
5. (Recommended, but not required) Try out some examples provided by Gurobi written in Python. Gurobi examples: https://www.gurobi.com/jupyter_models/
