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In this lecture, we cover

• a review of vectors and matrices,

• components optimization models,

• terminologies in mathematical optimization,

• linear functions and linear programming models.

1 Quick review of linear algebra

Throughout the course, we will frequently refer to vectors, matrices, and other parts of linear
algebra. Just for today, let us briefly review the notions of vectors and matrices.

We write a vector x ∈ Rd in the d-dimensional space as

x =


x1
x2
...
xd

 or x = (x1, . . . , xd).

The first represents x as a column vector, while the second is the row vector representation.
Rigorously speaking, they are the transpose of one another, i.e.

x1
x2
...
xd

 = (x1, . . . , xd)>,

but we interchangeably use them depending on the context. x1, . . . , xd are called the components
or coordinates of vector x.

An m× d matrix A ∈ Rm×d is written as

A =


a11 a12 · · · a1d
a21 a22 · · · a2d
...

...
. . .

...
am1 am2 · · · amd

 =


a>1
a>2
...
a>m

 .
Here, aij for i = 1, . . . ,m and j = 1, . . . , d are the entries of A. Moreover, ai ∈ Rd for i = 1, . . . ,m
are called the rows of A and given by

a>i =
[
ai1 a12 · · · aid

]
and ai =


ai1
ai2
...
aid

 .
Again, a>i is a row vector while ai is a column vector. Those who are not familiar with vectors and
matrices should review the basics of linear algebra.
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2 Components of optimization models

A decision-making problem has the following three components.

1. Decisions: parameters and variables that we need to determine. For example, the number
of units to produce, a schedule of sports games, and a regression model.

2. Constraints: restrictions and requirements that we need to satisfy. For example, the limits
on how much material we can use for production and balancing the number of away games
and that of home games for a team.

3. Objective: what we are trying to achieve. Typically either maximizing profits or minimizing
costs.

Optimization models formulate these three components of a decision-making problem mathemati-
cally and quantitatively.

• Decisions are encoded by variables x = (x1, . . . , xd) where each xj has to assign a numerical
value.

• Constraints are modeled by some functions of variables, i.e., a constraint is of the form
g(x) ≤ b for some function g : Rd → R and some bound b ∈ R. Here, without loss of
generality, we may assume that b = 0 for a constraint because g(x) ≤ b is equivalent to
g(x)− b ≤ 0.

• The objective is a function f : Rd → R that want to maximize or minimize.

We may have multiple decisions and constraints but usually there is a single objective. Settings
where the decision-maker has to consider multiple objectives can be formulated as the so-called
multi-objective optimization problem, but throughout the course, we only consider problems
with a single objective.

Given the formalism, we may state an optimization problem as follows.

Choose variables x to make f(x) as large (or small) as possible under the restrictions
that x satisfy g1(x) ≤ b1, . . . , gm(x) ≤ bm.

Standard ways to represent this is

min
x
/max

x
f(x)

s.t. gi(x) ≤ bi, i ∈ [m]
(2.1)

and
min
x
/max

x
{f(x) : gi(x) ≤ bi, i ∈ [m]} (2.2)

Here, “s.t.” stands for “subject to”, and [m] denotes the set {1, . . . ,m}. Note that there is a
subscript x under min and max. It means that the optimization problem is over decision variables
x. Unless there is some constraint on x, e.g. x ∈ Zd and x ∈ [0, 1]d, we assume that x ∈ Rd,
meaning that the components of x take real values. That said, (2.1) can be equivalently written as

min /max f(x)

s.t. gi(x) ≤ bi, i ∈ [m],

x ∈ Rd.

(2.3)
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It is common to omit the constraint x ∈ Rd.

Example 2.1. Let us get back to the production planning question. Let x and y be the variables
for the number of product X and and that of Y , respectively. Recall that we have 150 units of

A B

X 2 2
Y 3 1

Table 1: Materials required to produce products

material A and 70 units of material B, which imposes the constraints 2x+3y ≤ 150 and 2x+y ≤ 70.
Moreover, the quantities x and y cannot be negative. Lastly, the objective is to maximize the total
number of products produced. Here, the number of produced products would be x+ y. Hence, the
problem can be formulated as

max
x,y

x+ y

s.t. 2x+ 3y ≤ 150,

2x+ y ≤ 70,

x, y ≥ 0.

(2.4)

3 Terminologies in mathematical optimization

Next, we establish some conventional terminologies in the field of mathematical optimization. Let
us take an optimization problem whose objective is to minimize some function.

min f(x)

s.t. gi(x) ≤ bi, i ∈ [m],

x ∈ Rd.

(2.5)

• f(x) is the objective function.

• g1(x), . . . , gm(x) are constraint functions, and b1, . . . , bm are called right-hand sides.

• Any vector x ∈ Rd is a solution. A solution x satisfying all the constraints, gi(x) ≤ bi for
i ∈ [m] is called feasible or a feasible solution. If a solution x violates some constraint,
i.e. gi(x) > bi for some i ∈ [m], we call x infeasible or an infeasible solution.

• The value p∗ = minx {f(x) : gi(x) ≤ bi, i ∈ [m]}, as long as it is finite, is the optimal
value. We also call it the optimum.

• Given a solution x, we call f(x) the objective value of x.

• A feasible solution x∗ whose objective value f(x∗) is equal to the optimal value p∗ is called
optimal or an optimal solution. In fact, there can be more than one optimal solution.

• We say that the optimization problem (2.5) is feasible if it admits a feasible solution. We say
that the problem is infeasible if there is no feasible solution, in which case, we set p∗ = ∞
by convention.
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• If, for any r ∈ R, there is a feasible solution xr whose objective f(xr) is less than r, then the
problem is unbounded, in which case, we set p∗ = −∞.

The definitions and terminologies apply to maximization problems, as a maximization problem can
be equivalently transformed into a minimization problem. Note that

max
x
{f(x) : gi(x) ≤ bi, i ∈ [m]}

= −min
x
{−f(x) : gi(x) ≤ bi, i ∈ [m]} .

Here, the maximization problem being infeasible means that p∗ = −∞ while being unbounded
means p∗ =∞.

Example 2.2. In problem (2.4), any vector (x, y) ∈ R2 is a solution. Note that (0, 0), (10, 10),
(20, 20) all satisfy the constraints, so they are feasible solutions. However, (30, 30) violates the
second constraint as 2× 30 + 30 = 90 > 70, so (30, 30) is an infeasible solution.

As problem (2.4) has a feasible solution, the problem is feasible. We have seen that (15, 40) is
an optimal solution and that 15 + 40 = 55 is the optimal value. Therefore, the problem is not
unbounded.

4 Introduction to linear programming

4.1 Linear functions and linear programming

Linear programming is the first class of optimization problems that we learn in this course. We
will soon realize that the production planning example is a linear program. Here, the term “pro-
gramming” sounds like some type of computer programming, but in fact, it is more like planning.
Likewise, mathematical programming refers to classes of optimization problems that consist of
an objective function and functional constraints. Then what does the other term “linear” mean?
It means that the objective function and the constraints are linear functions, which we define
next.

We say that a function f : Rd → R is linear if

f(αx+ βy) = αf(x) + βf(y)

for any x, y ∈ Rd and α, β ∈ R. In fact, a function f is linear if and only if there exists some vector
c ∈ Rd such that

f(x) = c>x = c1x1 + c2x2 + · · ·+ cdxd =

d∑
j=1

cjxj .

Example 2.3. Let x ∈ R3. x1 + x2 + x3, x1 + 2x3, x2, and −x1− x2 + 3x3 are all linear functions.

Example 2.4. Let x ∈ R3. x1x3 and x21 + 2x1x2 + x22 are nonlinear.

A linear program (in short, LP) is an optimization of the following form.

min c>x

s.t. a>i x ≤ bi, i ∈ [m],

x ∈ Rd

(2.6)
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where c ∈ Rd, a1, . . . , am ∈ Rd, and b1, . . . , bm ∈ R. Here, the objective function c>x is equal to

c1x1 + c2x2 + · · ·+ cdxd,

and the constraint a>i x ≤ bi is equivalent to

ai1x1 + ai2x2 + · · ·+ aidxd ≤ bi.

Example 2.5. Recall the production planning problem (2.4) where x and y are the variables for
the numbers of products X and Y . The objective function is x + y, which is linear. Moreover,
2x + 3y, 2x + y, x, and y are all linear. Therefore, all constraints of (2.4) are given by linear
functions. Therefore, problem (2.4) is indeed a linear program.

4.2 Production planning

We have discussed the production planning problem of two types of products from two kinds of
materials. Let us discuss a more general version of production planning.

Imagine a company producing a variety of products.

• There are d different products in the product portfolio of the company. We enumerate them
by product 1, product 2, and so forth.

• There are m different kinds of materials necessary for producing the products. We enumerate
them by material 1, material 2, and so forth.

• One unit of product j sells for price pj for i ∈ [d].

• The current stock of material i is bi for i ∈ [m].

• Producing one unit of project j requires aij amount of material i for every pair (i, j) ∈ [m]×[d].
Here, [m]× [d] denote the set {(i, j) : i ∈ [m], j ∈ [d]}.

• We assume that all data are nonnegative, i.e. pj ≥ 0, bi ≥ 0, and aij ≥ 0 for all i ∈ [m] and
j ∈ [d].

• We assume that each product is divisible, which means that the amount of each product can
be any real number. For example, we may produce 1.5 units of product 1.

Given this information, the goal is to decide the production quantity of each project under the
current stock level of materials while maximizing the total revenue. Here, the revenue refers to
the gross income from selling the products. As expected, we can resolve this question by writing a
linear program (LP).

Remember the three components of a decision-making problem, decisions, constraints, and an
objective.

1. Decisions: let xj denote the amount of product j that we produce for j ∈ [d].

2. Objective: the goal is to maximize the total revenue. Here, the total revenue is given by∑
j∈[d]

pjxj .
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3. Constraints: the total consumption of material i should be at most the current stock. The
total consumption is ∑

j∈[d]

aijxj .

As the current stock of material i is given by bi, we can write the constraint as∑
j∈[d]

aijxj ≤ bi.

Moreover, we know that the production quantity of each product cannot be less than 0.
Hence,

x ≥ 0.

Here, x ≥ 0 simply means that each component of x is nonnegative.

In summary, the production planning problem can be formulated as the following LP.

max
∑
j∈[d]

pjxj

s.t.
∑
j∈[d]

aijxj ≤ bi, i ∈ [m],

x ≥ 0.

Next, let us consider a different objective.

• Suppose that one unit of material i incurs a cost of si for i ∈ [m].

The profit is defined as the net income after deducting costs from earnings. The company may
attempt to maximize the profit instead of the revenue. How can we model the new objective? Note
that producing one unit of product j incurs a cost of∑

i∈[m]

siaij .

Hence, the profit from selling one unit of product j is

pj −
∑
i∈[m]

siaij .

Then the new objective is to maximize

∑
j∈[d]

pj − ∑
i∈[m]

siaij

xj .

The corresonding LP is

max
∑
j∈[d]

pj − ∑
i∈[m]

siaij

xj

s.t.
∑
j∈[d]

aijxj ≤ bi, i ∈ [m],

x ≥ 0.
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