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1 Outline

In this lecture, we study

e complexity of nonconvex optimization,
e sparse regression,

e low-rank matrix completion.

2 Introduction to Nonconvex Optimization

Figure 9.1 shows a nonconvex function with two variables. As we can see, the function has one
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Figure 9.1: Ackley Function with Two Variables

global minimum but it has multiple local minima. Recall that for a convex function f, if V f(z) = 0,
then the corresponding « is a minimizer of the function f. Gradient-based methods for convex
optimization basically seek for a solution z with Vf(x) = 0. However, for a nonconvex function
f, a point x with V f(z) = 0 does not guarantee global optimality as it can be a locally optimal
solution.

In fact, finding the global minimum of a nonconvex function is a difficult task in general. To be
more precise, the following theorem shows that there exists a smooth nonconvex function, to find
the global minimum of which we need an exponential number of function evaluations.

Theorem 9.1. For any 3 > 0, there exists a 3-smooth function f : [0,1]7 — R on [0,1]? such that
any algorithm requires at least (ﬁ/e)Q(d) function queries to find an e-optimal solution x with

f(z) < min f(z) +e.
z€R
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Proof. We partition [0,1] into k invervals of equal length, which gives rise to k? boxes partitioning
[0,1]9. We can construct a function f such that a box contains a point z* with f(z*) = —e but f
has value 0 in the other boxes. This means that checking a box not containing z* does not provide
any information about the location of z*. This means that to find the box containing x*, we need
at least Q(k?) function evalutions. To make function f smooth with parameter 3, we can make f
behaves like

* /6 *
fx) = f@") + S llz = 2"
At the same time, to impose the condition that f(x) = 0 if x is not contained in the box with z*,
we can set k = O(y//€). Therefore, we need at least O ((\/ﬂ / e)d> function evaluations. O

There exist several important applications of nonconvex optimization. In the remainder of this
section, we provide an overview of some well-known nonconvex optimization problems.

2.1 Sparse Regression

Let us consider the following optimization problem.
1
min  —||Az — b||3 + Az 9.1
min |4z — bl + Alelo 91)

where

[zllo = [{é € [d] : @i # 0}
counts the number of nonzero coordinates of z. Here, ||z|o is called the fy-norm. Although the
name of ||x||p contains the term “norm”, ||z||p is a nonconvex function and thus it is not a norm.
The optimization problem is referred to as sparse regression because the \||z||p term encourages
to use less variables of z.

Due to nonconvexity of ||z||o, it is often difficult to solve (9.1) efficiently. Motivated by this, we can
approximate and replace the £y-norm by the £1-norm, which gives rise to LASSO:

1
min = ||Az — b2 + \|z||1. 9.2
min 24z~ b3 + Alal (9.2

We saw that the proximal gradient method solves (9.2) and it runs with
Ti4+1 = pI‘OXn)\“‘Hl(fEt - nvf(xt))
where

1 x—nA, ifx >n,
fla) = Az bl and (prox, (), =10, if A <@ <A,
x+nA, itz < —nA

Recall that the prox operator prox, ., (+) is called the shrinkage operator or the soft-thresholding
operator. In fact, we can apply proximal gradient descent to solve (9.1). Note that

() = awgmin { ully + 5 [}z — ul}
TOX . I ) = argmin u xT u .
POXpA| o g 0+ 3 2

By definition,

TOX, \ ||| (L =
PLOXpA|-llo i€ld] 0, otherwise.
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Here, the operator prox, )\”,”O(-) is referred to as the hard-thresholding operator. With the hard-
thresholding operator, one may run proximal gradient descent with update rule

Ti+1 = prOXn)\H~||0(-Tt =V f(x)).

Unlike LASSO, however, proximal gradient descent applied to sparse regression does not necessarily
converge to an optimal solution. This is again due to nonconvexity of the £y-norm.

Recent works [HM20, HMS22| consider mixed-integer programming formulations of (9.1) while
earlier works including LASSO focused on convex approximations of (9.1).

2.2 Low-Rank Matrix Completion

Let us consider

min  ||D — X||p subject to rank(X)=k
XeRnxp

where

e D is an n X p matrix,

o ||Al|p denotes the Frobenius norm, i.e., [|Allp = /30y Y0 a2,

By the definition of the Frobenius norm, the problem is equivalent to

, 1 en & ) .
Join g ;;(dw —x;5)° subject to rank(X) = k.
A common application is movie recommendation where matrix D collects user preference data of n
users rating p movies. In movie recommendation, the user rating matrix D is typically very sparse,
as it is rare that an user rates all movies. Hence, the goal is to find a matrix X that completes the
missing entries of D. The general hypothesis is that the true rating matrix X € R™*P is generated
by the product of an user-feature matrix U € R™** and a movie-feature matrix V € RP** over k
features as follows.

Under such a hypothesis, matrix X has rank k.

As expected, the constraint rank(X) = k defines a nonconvex set, so the matrix completion problem
is nonconvex. A commonly used solution approach is based on relaxing the constraint rank(X) = k
by

min{n,p}
X[l = Trace(VXTX) = Y oy(X) <k
i=1
where || X||. denotes the nuclear norm of X and o1(X), ..., Omin{np}(X) are the singular values

of X.



2.3 Max-Cut

Given a graph G = (V, F), the max-cut problem seeks to find a partition the vertex set V' so that
the number of edges crossing the partition is maximized. Here, a partition (V4, V3) of V' consists of
two sets V7, V5 satisfying V1 U Vo =V and V; N Vo = (), and the set of edges crossing the partition
is basically {uv € E : u € V1,v € Va}. For example, in Figure 9.2, there is a graph of 5 vertices
partitioned into red and black vertices, and the edges highlighted are the ones crossing the partition.
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Figure 9.2: Edges crossing a partition

The problem can be formulated by the following (discrete) optimization problem:

o 1 -z
ma —_—
ximize Z 5
ijel
subject to x; € {—1,1} for i € V.

As long as x; € R, z; € {—1,1} is equivalent to 27 = 1. Hence, the formulation is equivalent to

1— ;x5
maximize Z —d
ijeE
subject to 7 =1 fori € V.

Note that the contstraint ; € {—1,1} as well as 22 = 1 are nonconvex constraints. The vector
relaxation of the formulation is obtained by replacing x; by vector v; € R¥ as follows.

1—vv;
maximize Z -t J
ij€E
subject to  ||vi||2 =1 for ¢ € V.

Again, the constraint ||v;||2 = 1 is still nonconvex.

Another relaxation is given as follows. Let d = |V/|. Then we consider a d x d matrix X whose entry
at ith row and jth column, Xj;, is z;7;. Then we have that X = xzz ", which is the outer product of
vector z and itself. In fact, X is of the form X = zz " if and only if X is positive semidefinite and



the rank of X is precisey 1. What this implies is that, the max-cut formulation can be rewritten as

1—X;;
maximize Z 5 !

ijeE

subject to X; =1fori eV,
X =0,
rank(X) = 1.

Here, the constrsint rank(X) = 1 is nonconvex. A common approach is to take out the nonconvex
constraint and consider

o Z 1— X
maximize a—

£ 2
ijeR

subject to X; =1forieV,
X >=0.

This is often called the semidefinite programming (SDP) relaxation of max-cut. Here, the
SDP relaxation is a convex optimization problem.
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