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1 Outline

In this lecture, we study

• complexity of nonconvex optimization,

• sparse regression,

• low-rank matrix completion.

2 Introduction to Nonconvex Optimization

Figure 9.1 shows a nonconvex function with two variables. As we can see, the function has one

Figure 9.1: Ackley Function with Two Variables

global minimum but it has multiple local minima. Recall that for a convex function f , if ∇f(x) = 0,
then the corresponding x is a minimizer of the function f . Gradient-based methods for convex
optimization basically seek for a solution x with ∇f(x) = 0. However, for a nonconvex function
f , a point x with ∇f(x) = 0 does not guarantee global optimality as it can be a locally optimal
solution.

In fact, finding the global minimum of a nonconvex function is a difficult task in general. To be
more precise, the following theorem shows that there exists a smooth nonconvex function, to find
the global minimum of which we need an exponential number of function evaluations.

Theorem 9.1. For any β > 0, there exists a β-smooth function f : [0, 1]d → R on [0, 1]d such that
any algorithm requires at least (β/ε)Ω(d) function queries to find an ε-optimal solution x with

f(x) ≤ min
x∈Rd

f(x) + ε.
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Proof. We partition [0, 1] into k invervals of equal length, which gives rise to kd boxes partitioning
[0, 1]d. We can construct a function f such that a box contains a point x∗ with f(x∗) = −ε but f
has value 0 in the other boxes. This means that checking a box not containing x∗ does not provide
any information about the location of x∗. This means that to find the box containing x∗, we need
at least Ω(kd) function evalutions. To make function f smooth with parameter β, we can make f
behaves like

f(x) ' f(x∗) +
β

2
‖x− x∗‖22.

At the same time, to impose the condition that f(x) = 0 if x is not contained in the box with x∗,

we can set k = O(
√
β/ε). Therefore, we need at least O

(
(
√
β/ε)d

)
function evaluations.

There exist several important applications of nonconvex optimization. In the remainder of this
section, we provide an overview of some well-known nonconvex optimization problems.

2.1 Sparse Regression

Let us consider the following optimization problem.

min
x∈Rd

1

2
‖Ax− b‖22 + λ‖x‖0 (9.1)

where
‖x‖0 = |{i ∈ [d] : xi 6= 0}|

counts the number of nonzero coordinates of x. Here, ‖x‖0 is called the `0-norm. Although the
name of ‖x‖0 contains the term “norm”, ‖x‖0 is a nonconvex function and thus it is not a norm.
The optimization problem is referred to as sparse regression because the λ‖x‖0 term encourages
to use less variables of x.

Due to nonconvexity of ‖x‖0, it is often difficult to solve (9.1) efficiently. Motivated by this, we can
approximate and replace the `0-norm by the `1-norm, which gives rise to LASSO:

min
x∈Rd

1

2
‖Ax− b‖22 + λ‖x‖1. (9.2)

We saw that the proximal gradient method solves (9.2) and it runs with

xt+1 = proxηλ‖·‖1(xt − η∇f(xt))

where

f(x) =
1

2
‖Ax− b‖22 and

(
proxηλ‖·‖1(x)

)
i∈[d]

=


x− ηλ, if x ≥ ηλ,
0, if −ηλ ≤ x < ηλ,

x+ ηλ, if x < −ηλ.

Recall that the prox operator proxηλ‖·‖1(·) is called the shrinkage operator or the soft-thresholding
operator. In fact, we can apply proximal gradient descent to solve (9.1). Note that

proxηλ‖·‖0(x) = argmin
u∈Rd

{
‖u‖0 +

1

2ηλ
‖x− u‖22

}
.

By definition, (
proxηλ‖·‖0(x)

)
i∈[d]

=

{
xi, if x2

i ≥ 2ηλ,

0, otherwise.
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Here, the operator proxηλ‖·‖0(·) is referred to as the hard-thresholding operator. With the hard-
thresholding operator, one may run proximal gradient descent with update rule

xt+1 = proxηλ‖·‖0(xt − η∇f(xt)).

Unlike LASSO, however, proximal gradient descent applied to sparse regression does not necessarily
converge to an optimal solution. This is again due to nonconvexity of the `0-norm.

Recent works [HM20, HMS22] consider mixed-integer programming formulations of (9.1) while
earlier works including LASSO focused on convex approximations of (9.1).

2.2 Low-Rank Matrix Completion

Let us consider
min

X∈Rn×p
‖D −X‖F subject to rank(X) = k

where

• D is an n× p matrix,

• ‖A‖F denotes the Frobenius norm, i.e., ‖A‖F =
√∑n

i=1

∑p
j=1 a

2
ij .

By the definition of the Frobenius norm, the problem is equivalent to

min
X∈Rn×p

1

2

n∑
i=1

p∑
j=1

(dij − xij)2 subject to rank(X) = k.

A common application is movie recommendation where matrix D collects user preference data of n
users rating p movies. In movie recommendation, the user rating matrix D is typically very sparse,
as it is rare that an user rates all movies. Hence, the goal is to find a matrix X that completes the
missing entries of D. The general hypothesis is that the true rating matrix X ∈ Rn×p is generated
by the product of an user-feature matrix U ∈ Rn×k and a movie-feature matrix V ∈ Rp×k over k
features as follows. X

 =

 U


 V >

 .
Under such a hypothesis, matrix X has rank k.

As expected, the constraint rank(X) = k defines a nonconvex set, so the matrix completion problem
is nonconvex. A commonly used solution approach is based on relaxing the constraint rank(X) = k
by

‖X‖∗ = Trace(
√
X>X) =

min{n,p}∑
i=1

σi(X) ≤ k

where ‖X‖∗ denotes the nuclear norm of X and σ1(X), . . . , σmin{n,p}(X) are the singular values
of X.
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2.3 Max-Cut

Given a graph G = (V,E), the max-cut problem seeks to find a partition the vertex set V so that
the number of edges crossing the partition is maximized. Here, a partition (V1, V2) of V consists of
two sets V1, V2 satisfying V1 ∪ V2 = V and V1 ∩ V2 = ∅, and the set of edges crossing the partition
is basically {uv ∈ E : u ∈ V1, v ∈ V2}. For example, in Figure 9.2, there is a graph of 5 vertices
partitioned into red and black vertices, and the edges highlighted are the ones crossing the partition.

Figure 9.2: Edges crossing a partition

The problem can be formulated by the following (discrete) optimization problem:

maximize
∑
ij∈E

1− xixj
2

subject to xi ∈ {−1, 1} for i ∈ V.

As long as xi ∈ R, xi ∈ {−1, 1} is equivalent to x2
i = 1. Hence, the formulation is equivalent to

maximize
∑
ij∈E

1− xixj
2

subject to x2
i = 1 for i ∈ V.

Note that the contstraint xi ∈ {−1, 1} as well as x2
i = 1 are nonconvex constraints. The vector

relaxation of the formulation is obtained by replacing xi by vector vi ∈ Rk as follows.

maximize
∑
ij∈E

1− v>i vj
2

subject to ‖vi‖2 = 1 for i ∈ V.

Again, the constraint ‖vi‖2 = 1 is still nonconvex.

Another relaxation is given as follows. Let d = |V |. Then we consider a d×d matrix X whose entry
at ith row and jth column, Xij , is xixj . Then we have that X = xx>, which is the outer product of
vector x and itself. In fact, X is of the form X = xx> if and only if X is positive semidefinite and
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the rank of X is precisey 1. What this implies is that, the max-cut formulation can be rewritten as

maximize
∑
ij∈E

1−Xij

2

subject to Xii = 1 for i ∈ V,
X � 0,

rank(X) = 1.

Here, the constrsint rank(X) = 1 is nonconvex. A common approach is to take out the nonconvex
constraint and consider

maximize
∑
ij∈E

1−Xij

2

subject to Xii = 1 for i ∈ V,
X � 0.

This is often called the semidefinite programming (SDP) relaxation of max-cut. Here, the
SDP relaxation is a convex optimization problem.
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