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1 Outline

In this lecture, we study

• coordinate descent,

• random coordinate descent,

• variance-reduced stochastic methods.

2 Coordinate Descent

When training a machine learning model, we often deal with a huge number of features and pa-
rameters. Then the training process corresponds to a high-dimensional optimization problem, in
which computing the gradient or its stochastic estimate is expensive. On the other hand, it is often
easy to deduce directional derivatives along the coordinate directions. Moreover, some structured
optimization problems admit a decomposition with respect to a partition of the coordinates. For
example, we have regularizers f(x) = ‖x‖22 and f(x) = ‖x‖1. In addition, regularizers that induce
“group sparsity” are proposed, and they are of the form

f(x) =
m∑
i=1

fi(xSi)

where S1∪· · ·∪Sm = [d] and x = (xS1 , . . . , xSm). Coordinate descent is a widely used optimization
method that runs with directional derivatives and thus provides an efficient framework for tacking
the abovementioned applications.

For i ∈ [d], let ∂if(x) denote the directional derivative of f at x along the coordinate direction
ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ Rd:

∂if(x) = lim
δ→0

f(x+ δei)− f(x)

δ
.

At each iteration t, coordinate descent takes an index it ∈ [d] and deduce the next iterate xt+1

from the current solution xt based on

xt+1 = xt − ηt∂itf(xt)eit .

Basically, coordinate descent updates one coordinate at a time. There are many strategies for
choosing an index at each iteration. In this section, we consider random sampling-based coordinate
descent implementations.

The most basic version is to sample a coordinate uniformly at random. In fact, this version is an
instance of stochastic gradient descent. To see this, we take

gt = d · ∂itf(xt)eit
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and note that

E [gt | xt] =
d∑
i=1

1

d
· d · ∂if(xt)ei = ∇f(xt).

Hence, gt is an unbiased estimator of ∇f(xt), and coordinate descent runs with the update rule

xt+1 = xt −
ηt
d
gt

with step size ηt/d. Moreover, we have

E
[
‖gt‖22 | xt

]
=

d∑
i=1

1

d
· d2|∂if(xt)|2 = d‖∇f(xt)‖22.

Algorithm 1 Coordinate Descent

Initialize x1 ∈ Rd.
for t = 1, . . . , T do

Sample an index it ∈ [d] uniformly at random.
Update xt+1 = xt − ηt∂itf(xt)eit for a step size ηt > 0.

end for
Return (1/T )

∑T
t=1 xt.

Theorem 8.1. Let f : Rd → R be a convex function that is L-Lipschitz continuous in the `2-norm.
Then choosing ηt =

√
d/T for t ≥ 1, we have

E

[
f

(
1

T

T∑
t=1

xt

)]
− f(x∗) ≤ ‖x1 − x

∗‖22 + L2

2

√
d

T

where x∗ ∈ argminx∈Rdf(x) and the expectation is taken over the random choice of coordinates.

Proof. The update rule of coordinate descent implies that

g>t (xt − x∗) ≤
d

2ηt

(
‖xt − x∗‖22 − ‖xt+1 − x∗‖22

)
+
ηt
2d
‖gt‖22.

Note that

E
[
g>t (xt − x∗)

]
= E

[
E
[
g>t (xt − x∗) | xt

]]
= E

[
∇f(xt)

>(xt − x∗)
]
≥ E [f(xt)− f(x∗)] .

Moreover,
E
[
‖gt‖22

]
= E

[
E
[
‖gt‖22 | xt

]]
= E

[
d‖∇f(xt)‖22

]
≤ dL2.

Then it follows that

E [f(xt)]− f(x∗) ≤ d

2ηt

(
E
[
‖xt − x∗‖22

]
− E

[
‖xt+1 − x∗‖22

])
+
ηt
2
L2.

Summing up this inequality for t = 1, . . . , T and dividing the resulting one by T , we deduce that

E [f(xt)]− f(x∗) ≤ d‖x1 − x∗‖22
2ηT

+
η

2
L2

where η =
√
d/T .
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3 Random Coordinate Descent

Assume that for i ∈ [d],
|∂if(x+ δei)− ∂if(x)| ≤ βi |δ| .

Note that this is a coordinate version of smoothness. In fact, if f is β-smooth in the `2-norm, it
follows that

|∂if(x+ δei)− ∂if(x)| ≤ ‖∇f(x+ δei)−∇f(x)‖2 ≤ β |δ| .
Then we consider a random index sampling strategy which samples index i ∈ [d] with probability

βγi∑d
j=1 β

γ
j

for some γ > 0. Let P(γ) denote the corresponding probability distribution over the indices. Then
we consider coordinate descent with the following update rule. At each iteration t, we sample an
index it from distribution P(γ) and take

xt+1 = xt −
1

βit
∂itf(xt)eit .

We refer to this version of coordinate descent as random coordinate descent and use notation
RCD(γ) to specify the parameter γ. Unlike the previous version of coordinate descent, RCD(γ) is

Algorithm 2 RCD(γ)

Initialize x1 ∈ Rd.
for t = 1, . . . , T do

Sample an index it ∈ [d] from the distribution P(γ).
Update xt+1 = xt − 1

βit
∂itf(xt)eit for a step size ηt > 0.

end for
Return xT+1.

not an instance of SGD. To see this, we consider

E
[

1

βit
∂itf(xt)eit

]
=

n∑
i=1

1∑d
j=1 β

γ
j

βγ−1i ∂if(xt)ei,

which explains that the direction

gt =
1

βit
∂itf(xt)eit

is not an unbiased estimator of the gradient ∇f(xt). The next theorem provides a convergence
guarantee of RCD(γ).

Theorem 8.2. Let f : Rd → R be a convex function that satisfies |∂if(x+ δei)− ∂if(x)| ≤ βi |δ|
for i ∈ [d]. Then RCD(γ) guarantees that

E [f(xT+1)]− f(x∗) ≤
2R2

∑d
i=1 β

γ
i

T

where x∗ ∈ argminx∈Rd f(x) and

R2 = sup
x∈Rd:f(x)≤f(x1)

d∑
i=1

β1−γi (x− x∗)2i .
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Proof. Note that for any x ∈ Rd,
hi,x(δ) = f(x+ δei)

is a convex function that is βi-smooth. Moreover, we have that

∇δhi,x(0) = lim
ε→0

hi,x(ε)− hi,x(0)

ε
= lim

ε→0

f(x+ εei)− f(x)

ε
= ∂if(x).

Note that the RCD(γ) step applied at iteration t is equivalent to gradient descent applied to hit,xt
which is βit-smooth. Based on the analysis of gradient descent for smooth convex minimization, it
follows that

f

(
x− 1

βi
∂if(x)ei

)
− f(x) = hi,x

(
− 1

βi
∂if(x)

)
− hi,x(0) ≤ − 1

2βi
‖∇δhi,x(0)‖22 = − 1

2βi
∂if(x)2.

This implies that RCD(γ) is a descent method:

f(x1) ≥ f(x2) ≥ · · · ≥ f(xT+1).

Furthermore, for any fixed x,

Ei∼P(γ)
[
f

(
x− 1

βi
∂if(x)ei

)
− f(x)

]
≤ Ei∼P(γ)

[
− 1

2βi
∂if(x)2

]
=

d∑
i=1

βγi∑d
j=1 β

γ
j

· − 1

2βi
∂if(x)2

= − 1

2
∑d

j=1 β
γ
j

d∑
i=1

βγ−1i ∂if(x)2.

This implies that

E [f (xt+1)− f(xt) | xt] ≤ −
1

2
∑d

j=1 β
γ
j

d∑
i=1

βγ−1i ∂if(xt)
2.

Moreover, convexity of f implies that

f(xt)− f(x∗) ≤ ∇f(xt)
>(xt − x∗)

≤

(
d∑
i=1

βγ−1i ∂if(xt)
2

)1/2( d∑
i=1

β1−γi (xt − x∗)2i

)1/2

≤ R

(
d∑
i=1

βγ−1i ∂if(xt)
2

)1/2

where the second inequality follows from the Cauchy-Schwarz inequality and the third inequality
is due to the choice of R. Combining the last two inequalitis, it follows that

E [f (xt+1)− f(xt) | xt] ≤ −
1

2R2
∑d

j=1 β
γ
j

(f(xt)− f(x∗))2 .

Taking the expectation, we obtain

E [f(xt+1)− f(x∗)]− E [f(xt)− f(x∗)] ≤ − 1

2R2
∑d

j=1 β
γ
j

E
[
(f(xt)− f(x∗))2

]
.
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Here, as f(xt+1) ≤ f(xt), we have f(xt+1)− f(x∗) ≤ f(xt)− f(X∗) and thus

E
[
(f(xt)− f(x∗))2

]
≥ E [f(xt)− f(x∗)]2 ≥ E [f(xt+1)− f(x∗)] · E [f(xt)− f(x∗)] .

Therefore, it follows that

1

E [f(xt)− f(x∗)]
− 1

E [f(xt+1)− f(x∗)]
≤ − 1

2R2
∑d

j=1 β
γ
j

.

Summing up this inequality for t ≥ 1, we deduce that

E [f(xT+1)− f(x∗)] ≤
2R2

∑d
j=1 β

d
j

T
,

as required.

4 Variance-Reduced (VR) Stochastic Methods

Recall that stochastic gradient descent guarantees that if the step size is set to

ηt = min

{
1

β
,
‖x1 − x∗‖2
σ
√

2T

}
for t ≥ 1, we deduce

E

[
f

(
1

T

T+1∑
t=2

xt

)]
− f(x∗) ≤ β‖x1 − x∗‖22

2T
+
σ‖x1 − x∗‖2

√
2√

T

when f is β-smooth. Note that the second term is incurred due to the variance σ2 of estimating the
gradient. Basically, even when the objective function f is smooth, we may have to choose a small
step size of order O(1/

√
T ). Motivated by this, we develop algorithms that are sample-efficient,

and at the same time, recover near-optimal performance guarantees.

We consider

minimizex∈Rd f(x) =
1

n

n∑
i=1

fi(x)

which is called the finite-sum problem. In stochastic optimization, we had the objective of

E [f(x, ξ)] .

Sampling n random vectors ξ1, . . . , ξn, we obtain n sampled functions f(x, ξ1), . . . , f(x, ξn). More-
over,

1

n

n∑
i=1

f(x, ξi)

is an estimator of the original objective function. Taking fi(x) = f(x, ξi), we get the above
optimization problem. Hence, in the context of stochastic optimization, the problem is often called
the empirical risk minimization (ERM) and the sample average approximation (SAA).

It is widely known that stochastic gradient descent works well for the finite-sum problem. In the
previous section, we learned that taking a mini-batch of stochastic gradients can reduce the variance
term. In fact, there are other ways of reducing the variance, and they are often called variance
reduced (VR) stochastic methods. Among many of these methods, we mention a few below.
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• Stochastic Average Gradient (SAG) [SLRB17].

• SAGA [DBLJ14].

• Stochastic Variance Reduced Gradient (SVRG) [JZ13].

4.1 Stochastic Variance Reduced Gradient (SVRG)

In particular, we introduce SVRG for this lecture. To elaborate, we select an index r from {1, . . . , n}
uniformly at random. Then for any two points x and y, consider

ĝx = ∇fr(x)− (∇fr(y)−∇f(y)).

By the random choice of r, it follows that

E [ĝx] = E [∇fr(x)]− (E [∇fr(y)]−∇f(y))

= ∇f(x)− (∇f(y)−∇f(y))

= ∇f(x).

In particular, when y = x∗ ∈ argminx∈Rd f(x), we have

ĝx = ∇fr(x)−∇fr(x∗).

Moreover, we can use

Lemma 8.3. If f1, . . . , fn are convex and β-smooth in the `2 norm, then

Er∼P
[
‖∇fr(x)−∇fr(x∗)‖22

]
≤ 2β(f(x)− f(x∗))

where P is the uniform distribution over {1, . . . , n} and x∗ ∈ argminx∈Rd f(x).

Proof. Note that

gr(x) = fr(x)−
(
fr(x

∗) +∇fr(x∗)>(x− x∗)
)
≥ 0

because fr is convex. Moreover, fr is β-smooth, and we have

‖∇gr(x)−∇gr(y)‖2 = ‖∇fr(x)−∇fr(x∗)−∇fr(y) +∇fr(x∗)‖2 = ‖∇fr(x)−∇fr(y)‖2,

implying in turn that gr is β-smooth. Then it follows that

gr

(
x− 1

β
∇gr(x)

)
≤ gr(x)− 1

2β
‖∇gr(x)‖22.

As gr ≥ 0, we obtain
‖∇gr(x)‖22 ≤ 2βgr(x).

By the definition of gr, this is equivalent to the following.

‖∇fr(x)−∇fr(x)‖2 ≤ 2β
(
fr(x)− fr(x∗)−∇fr(x∗)>(x− x∗)

)
.

Taking the expection of each side with respect to r,

E [‖∇fr(x)−∇fr(x)‖2] ≤ 2β
(
E [fr(x)]− E [fr(x

∗)]− E
[
∇fr(x∗)>(x− x∗)

])
= 2β

(
f(x)− f(x∗)−∇f(x∗)>(x− x∗)

)
= 2β (f(x)− f(x∗)) ,

as required.
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Algorithm 3 Stochastic variance reduced gradient (SVRG) descent

Initialize x1 ∈ C.
for t = 1, . . . , T do

y1 = xt.
for k = 1, . . . , B do

Sample r from {1, . . . , n} uniformly at random.
Update yk+1 = yk − η(∇fr(yk)− (∇fr(xt)−∇f(xt))).

end for
Update xt+1 = 1

B

∑B
k=1 yk.

end for
Return xT+1.

Lemma 8.3 basically bounds the variance term E
[
‖ĝx‖22

]
given by ĝx = ∇fr(x)−∇fr(x∗). Based

on this result, we consider the following algorithm.

In the inner loop, we obtain a stochastic estimator of the gradient, ∇fr(yk), as in each iteration of
SGD. On the other hand, the outer loop requires computing the exact gradient, ∇f(xt).

4.2 SVRG analysis

Theorem 8.4. Assume that f1, . . . , fn are β-smooth and f = (1/n)
∑n

i=1 fi is α-strongly convex
with respect to the `2 norm. Setting η = 1/(6β) and B = 36β/α, xT+1 returned by Algorithm 3
satisfies

E [f(xT+1)]− f(x∗) ≤
(

3

4

)T
(f(x1)− f(x∗))

where x∗ ∈ argminx∈Rd f(x).

Proof. Let
gk = ∇fr(yk)−∇fr(xt) +∇f(xt).

Note that

‖yk+1 − x∗‖22 = ‖yk − ηgk − x∗‖22
= ‖yk − x∗‖22 − 2ηg>k (yk − x∗) + η2‖gk‖22.

(8.1)

Let us consider the third term η2‖gk‖22 in the right-hand side of (8.1). Note that

E
[
‖gk‖22 | yk

]
= E

[
‖∇fr(yk)−∇fr(xt) +∇f(xt)‖22 | yk

]
= E

[
‖∇fr(yk)−∇fr(x∗) +∇fr(x∗)−∇fr(xt) +∇f(xt)‖22 | yk

]
≤ E

[
2‖∇fr(yk)−∇fr(x∗)‖22 + 2‖ − ∇fr(x∗) +∇fr(xt)−∇f(xt)‖22 | yk

]
= 2E

[
‖∇fr(yk)−∇fr(x∗)‖22 | yk

]
+ 2E

[
‖ − ∇fr(x∗) +∇fr(xt)−∇f(xt)‖22 | yk

]
(8.2)

where the inequality is because ‖a − b‖22 ≤ 2‖a‖22 + 2‖b‖22. Moreover, the second term in the
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right-hand side of (8.2) can be bounded as follows.

E
[
‖ − ∇fr(x∗) +∇fr(xt)−∇f(xt)‖22 | yk

]
= E

[
‖ − ∇fr(x∗) +∇fr(xt)‖22 − 2∇f(xt)

>(∇fr(xt)−∇fr(x∗)) + ‖∇f(xt)‖22 | yk
]

= E
[
‖ − ∇fr(x∗) +∇fr(xt)‖22 | yk

]
− 2∇f(xt)

>E [∇fr(xt)−∇fr(x∗) | yk]
+ E

[
‖∇f(xt)‖22 | yk

]
= E

[
‖ − ∇fr(x∗) +∇fr(xt)‖22 | yk

]
− 2∇f(xt)

>(∇f(xt)−∇f(x∗))

+ E
[
‖∇f(xt)‖22 | yk

]
= E

[
‖ − ∇fr(x∗) +∇fr(xt)‖22 | yk

]
− 2∇f(xt)

>∇f(xt) + E
[
‖∇f(xt)‖22 | yk

]
= E

[
‖ − ∇fr(x∗) +∇fr(xt)‖22 | yk

]
− E

[
‖∇f(xt)‖22 | yk

]
≤ E

[
‖ − ∇fr(x∗) +∇fr(xt)‖22 | yk

]
.

(8.3)

Combining (8.2) and (8.3), it follows that

E
[
‖gk‖22 | yk

]
≤ 2E

[
‖∇fr(yk)−∇fr(x∗)‖22 | yk

]
+ 2E

[
‖ − ∇fr(x∗) +∇fr(xt)‖22 | yk

]
≤ 4β(f(yk)− f(x∗)) + 4β(f(xt)− f(x∗))

= 4β(f(yk)− f(x∗) + f(xt)− f(x∗)).

(8.4)

Applying the tower rule to (8.4),

E
[
‖gk‖22 | xt

]
= E

[
E
[
‖gk‖22 | yk

]
| xt

]
≤ E [4β(f(yk)− f(x∗) + f(xt)− f(x∗)) | xt]
= 4β(E [f(yk) | xt]− f(x∗) + f(xt)− f(x∗)).

(8.5)

Next, we consider the term −2ηg>k (yk − x∗) in (8.1).

E
[
−2ηg>k (yk − x∗) | yk

]
= −2ηE [gk | yk]> (yk − x∗)

= −2ηE [∇fr(yk)−∇fr(xt) +∇f(xt) | yk]> (yk − x∗)
= −2η∇f(yk)

>(yk − x∗)
≤ −2η(f(yk)− f(x∗)).

(8.6)

Again, applying the tower rule to (8.6),

E
[
−2ηg>k (yk − x∗) | xt

]
= E

[
E
[
−2ηg>k (yk − x∗) | yk

]
| xt

]
≤ E [−2η(f(yk)− f(x∗)) | xt]
= −2η(E [f(yk) | xt]− f(x∗))

(8.7)

Combining (8.1), (8.5), and (8.7), we obtain

E
[
‖yk+1 − x∗‖22 | xt

]
≤ E

[
‖yk − x∗‖22 | xt

]
− 2η(E [f(yk) | xt]− f(x∗))

+ 4η2β(E [f(yk) | xt]− f(x∗) + f(xt)− f(x∗))

= E
[
‖yk − x∗‖22 | xt

]
− 2η(1− 2ηβ)(E [f(yk) | xt]− f(x∗))

+ 4η2β(f(xt)− f(x∗))

(8.8)

8



Summing (8.8) over k = 1, . . . , B, we obtain

2η(1− 2ηβ)
B∑
k=1

(E [f(yk) | xt]− f(x∗)) ≤ E
[
‖y1 − x∗‖22 | xt

]
− E

[
‖yB+1 − x∗‖22 | xt

]
+ 4η2βB(f(xt)− f(x∗))

≤ ‖xt − x∗‖22 + 4η2βB(f(xt)− f(x∗))

≤
(

2

α
+ 4η2βB

)
(f(xt)− f(x∗)).

(8.9)

Dividing each side of (8.9) by B,

2η(1− 2ηβ)(E [f (xt+1) | xt]− f(x∗)) = 2η(1− 2ηβ)(E

[
f

(
1

B

B∑
k=1

yk

)
| xt

]
− f(x∗))

≤ 2η(1− 2ηβ)
1

B

B∑
k=1

(E [f (yk) | xt]− f(x∗))

≤
(

2

αB
+ 4η2β

)
(f(xt)− f(x∗)).

(8.10)

Remember that

η =
1

6β
, B =

36β

α
.

Then it follows from (8.10) that

E [f (xt+1) | xt]− f(x∗)) ≤ 1

2η(1− 2ηβ)

(
2

αB
+ 4η2β

)
(f(xt)− f(x∗))

=
3β

1− 1/3

(
1

18β
+

1

9β

)
(f(xt)− f(x∗))

=
3

4
(f(xt)− f(x∗)).

(8.11)

Applying the tower rule to (8.11),

E [f (xt+1)]− f(x∗) ≤ 3

4
(E [f(xt)]− f(x∗))

≤
(

3

4

)t
(f(x1)− f(x∗)),

(8.12)

as required.
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