
DS 801: Advanced Optimization for Data Science KAIST, Fall 2024
Lecture #7: Stochastic Gradient Descent & Binary Classification March 18, 2024
Lecturer: Dabeen Lee

1 Outline

In this lecture, we study

• stochastic optimization,

• stochastic gradient descent,

• the perceptron algorithm,

• the support vector machine,

• logistic regression.

2 Stochastic Optimization

Stochastic optimization (SO) is an optimization problem of the following form.

min
x∈X

f(x) = Eξ∼P [h(x, ξ)]

where

• ξ is a random parameter vector whose underlying distribution is given by P,

• X is the feasible set for the decision vector x.

If h(x, ξ) is convex with respect to x for any fixed ξ, then

f(x) = Eξ∼P [h(x, ξ)]

is convex. When the distribution P has finite support {ξ1, . . . , ξn} with P[ξ = ξi] = 1/n for i ∈ [n],
then we have

f(x) =
1

n

n∑
i=1

h(x, ξi).

For linear regression, we have a set of n data points (a1, b1), . . . , (an, bn) where ai is a feature vector
and bi is its associated response for i ∈ [n]. Then the empirical distribution over the data set is
given by P[(a, b) = (ai, bi)] = 1/n. A linear model with coefficient vector x predicts the response of
feature vector a would be x>a. Then we can consider the squared loss of the model with respect
to a data point (a, b) as

h(x, (a, b)) = (b− x>a)2.

As (a, b) is distributed with P, the expected loss is given by

min
x

E(a,b)∼P [h(x, (a, b))] = min
x

1

n

n∑
i=1

(bi − x>ai)2.

1

3 Stochastic Gradient Descent

When we have f(x) = Eξ∼P [h(x, ξ)], the gradient of f is given by ∇f(x) = Eξ∼P [∇h(x, ξ)],
computing which requires knowledge of the underlying distribution P. Instead of computing the
exact gradient, one would consider a more efficient way of considering a stochastic estimate of
∇f(x). For example, one may obtain a sample ξ from distribution P, in which case ∇h(x, ξ) is an
unbiased estimator of the gradient ∇f(x). Here, the descent method with a stochastic estimate
of the gradient is referred to as stochastic gradient descent (SGD). Given a solution xt, we
obtain a stochastic estimate gt of the gradient ∇f(xt) and apply

xt+1 = projX (xt − ηtgt)

for some step size ηt > 0.

Algorithm 1 Stochastic Gradient Descent

Initialize x1 ∈ X .
for t = 1, . . . , T do

Obtain an estimator gt of ∇f(xt).
Update xt+1 = projX {xt − ηtgt} for a step size ηt > 0.

end for
Return (1/T)

∑T+1
t=2 xt.

In this section, we consider the special case where X = Rd (the unconstrained case) and the
objective function f is a smooth convex function.

Theorem 7.1. Let f : Rd → R be a convex function that is β-smooth in the `2-norm. Let
x1, . . . , xT+1 be the iterates generated by Algorithm 1. Assume that for each t ≥ 1,

E [gt | xt] = ∇f(xt) and E
[
‖gt −∇f(xt)‖22 | xt

]
≤ σ2.

Then setting step size ηt = min
{

1/β, 1/
√
T
}

for t ≥ 1, we deduce

E

[
f

(
1

T

T+1∑
t=2

xt

)]
− f(x∗) ≤ β‖x1 − x∗‖22

2T
+

2σ2 + ‖x1 − x∗‖22
2
√
T

where x∗ ∈ argminx∈Rd f(x). Setting step size ηt = min
{

1/β, ‖x1 − x∗‖2/σ
√

2T
}

for t ≥ 1,

E

[
f

(
1

T

T+1∑
t=2

xt

)]
− f(x∗) ≤ β‖x1 − x∗‖22

2T
+
σ‖x1 − x∗‖2

√
2√

T
.

Proof. Since E [gt | xt] = ∇f(xt) and E
[
‖gt −∇f(xt)‖22 | xt

]
≤ σ2, it follows that

E
[
‖gt‖22 | xt

]
= E

[
‖gt −∇f(xt)‖22 | xt

]
+ ‖∇f(xt)‖22 ≤ ‖∇f(xt)‖22 + σ2.

2

Let η be such that ηt = η for t ≥ 1. Next, consider

E [f(xt+1)− f(xt) | xt] ≤ E
[
∇f(xt)

>(xt+1 − xt) +
β

2
‖xt+1 − xt‖22 | xt

]
= E

[
−η∇f(xt)

>gt +
βη2

2
‖gt‖22 | xt

]
≤ −η‖∇f(xt)‖22 +

βη2

2
‖‖∇f(xt)‖22 +

βη2

2
σ2

≤ −η
2
‖∇f(xt)‖22 +

η

2
σ2

(7.1)

where the first inequality follows from smoothness of f , the second inequality holds because
E [gt | xt] = ∇f(xt) and E

[
‖gt‖22 | xt

]
≤ ‖∇f(xt)‖22 + σ2, and the third inequality is from η ≤ 1/β.

Moreover, by convexity of f , we deduce the following. Note that

E
[
‖xt+1 − x∗‖22 | xt

]
= ‖xt − x∗‖22 − 2ηE

[
g>t (xt − x∗) | xt

]
+ η2E

[
‖gt‖22 | xt

]
= ‖xt − x∗‖22 − 2η∇f(xt)

>(xt − x∗) + η2E
[
‖gt‖22 | xt

]
≤ ‖xt − x∗‖22 − 2η(f(xt)− f(x∗)) + η2E

[
‖gt‖22 | xt

]
≤ ‖xt − x∗‖22 − 2η(f(xt)− f(x∗)) + η2‖∇f(xt)‖22 + η2σ2

which implies in turn that

f(xt)− f(x∗) ≤ 1

2η

(
E
[
‖xt+1 − x∗‖22 | xt

]
− ‖xt − x∗‖22

)
+
η

2
‖∇f(xt)‖22 +

η

2
σ2. (7.2)

Combining (7.1) and (7.2), it follows that

E [f(xt+1)− f(x∗)] ≤
E
[
‖xt+1 − x∗‖22

]
2η

−
E
[
‖xt − x∗‖22

]
2η

+ ησ2.

This implies that

E

[
1

T

T∑
t=1

f(xt+1)

]
− f(x∗) ≤ ‖x1 − x

∗‖22
2ηT

+ ησ2.

The last step is to show that

‖x1 − x∗‖22
2ηT

+ ησ2 ≤ β‖x1 − x∗‖22
2T

+
σ2√
T
,

as required.

4 Perceptron Algorithm

In this section, we consider the perceptron algorithm for binary classification. Given n data
(x1, y1), . . . , (xn, yn) where yi ∈ {−1, 1} are labels, we want to find a separating hyperplane

w>x = b

to classify data with +1 and data with −1. Basically, we predict the label of x as +1 if w>x ≥ b
and −1 if not. Here, without loss of generality, we may assume that b = 0. This is because, we

3

Figure 7.1: Data Points with Two classes

may consider the following augmentation step.

x→
[
x
1

]
and w>x = b→

[
w
−b

]> [
x
1

]
= 0.

The perceptron algorithm is a fundamental supervised learning algorithm for the binary classi-
fication problem. The algorithm works with a perceptron, which is the simplest form of neural
networks. At each iteration t, we sample a data point (xt, yt) at random, and update the weight

Figure 7.2: Perceptron for Binary Classification

vector w with the following rule. For some ηt > 0,

wt+1 =

{
wt + ηtytxt, if yt(w

>
t xt) < 0

wt, otherwise.

In fact, the perceptron algorithm can be viewed as the process of training a perceptron. The
perceptron is given as follows. Given a data point (x, y), the input vector is given by −yx which,
which is obtained by multiplying the feature vector x by the label y. Then the output of the input
layer is given by w>(−yx) = −y(w>x). Lastly, we use the ReLU (Rectified Linear Unit) for the
activation function σ, i.e., σ(z) = max{z, 0}. Then the output of the perceptron is given by

h(w, (x, y)) = σ(w>(−yx)) = max
{
−y(w>x), 0

}
.

Using f itself as our loss function, training the neural network is done by solving

min
w

1

n

n∑
i=1

max
{
−yi(w>xi), 0

}
.

4

Then to run SGD, we sample a data point (xt, yt) at each iteration t, and the subgradient of
h(wt, (xt, yt)) is given by

gt =

{
−ytxt, if yt(w

>
t xt) < 0,

0, otherwise.

In this case, SGD with step size ηt at step t would run in the same way as the perceptron algorithm.

We have just explained that the perceptron algorithm is equivalent to training a simple neural net-
work with a specific loss function. Then the next question is, does h(w, (x, y)) = max

{
−y(w>x), 0

}
give rise to a valid loss function? Note that h(w, (x, y)) = max

{
−y(w>x), 0

}
> 0 only if w>x < 0

and y = 1. Therefore, when (x, y) is correctly classified, i.e., the case w>x ≥ 0 and y = 1 or the
case w>x < 0 and y = 0, we have h(w, (x, y)) = max

{
−y(w>x), 0

}
= 0.

5 Support Vector Machine

In this section, we provide another algorithm for the binary classification problem. Again, the
problem is to find a separating hyperplane

w>x = 0

to classify data with +1 and data with −1. Basically, we predict the label of x as +1 if w>x ≥ 0
and −1 if not.

The goal is to find a separating hyperplane w>x = 0 such that the distance between two consecutive
hyperplanes w>x = 0 and w>x = 1 is maximized. Here, the distance is given by 1/‖w‖2. Then the
problem can be formulated as

minimize ‖w‖2
subject to yi(w

>xi) ≥ 0, i = 1, . . . , n.

If this problem is feasible, then x→ sign(w>x) is a valid classifier for the data set.

What if the data set is not entirely separable? What if no hyperplane separates the data without an
error? In such cases, we force separation via a penalty term, instead of imposing hard constraints.
The number of misclassifications can be used as penalty. Namely,

n∑
i=1

1(yi 6= sign(w>xi)).

However, this is not convex. Instead, we apply the hinge loss, which is an upper bound on the
number of misclassifications, given by

n∑
i=1

max{1− yi(w>xi), 0}.

Then we solve

min
w

λ‖w‖22 +
1

n

n∑
i=1

max{1− yi(w>xi), 0}

where λ determines the trade-off between the margin size and the penalty. To run SGD, we may
consider

h(w, (x, y)) = max
{

1− y(w>x), 0
}

+ λ‖w‖22.

5

Then a subgradient of h(w, (x, y)) is given by

g =

{
2λw − yx, if y(w>x) < 1,

2λw, otherwise.

Based on this, SGD works as follows. At each iteration t, given the current weight vector wt, we
sample a data point (xt, yt) based on which we deduce the next point with

wt+1 =

{
(1− 2ηtλ)wt + ηtytxt, if y(w>x) < 1,

(1− 2ηtλ)wt, otherwise.

This algorithm is referred to as the support vector machine.

6 Logistic Regression

In this section, we consider a different approach for the binary classification problem. The data
points (x1, y1), . . . , (xn, yn) have labels yi ∈ {0, 1}. Instead of a linear classifier as in the perceptron
algorithm and the support vector machine, we model the conditional probability distribution P(y |
x) using a logistic function as follows. We assume that for some weight vector w,

P(y | x) = gw(x) =
1

1 + e−w>x
.

If w>x → ∞, then we have P(y = 1 | x) = 1. w>x → −∞, then we have P(y = 1 | x) = 0. Given
the n data points (x1, y1), . . . , (xn, yn), the likelihood is given by

n∏
i=1

gw(xi)
yi · (1− gw(xi))

1−yi ,

and the log-likelihood is given by

log

(
n∏
i=1

gw(xi)
yi · (1− gw(xi))

1−yi

)
=

n∑
i=1

(yi log(gw(xi) + (1− yi) log(1− gw(xi)))

=

n∑
i=1

(
yi(w

>xi) + log
e−w

>xi

1 + e−w>xi

)
.

Then w maximizing the likelihood can be computed by

argmax
w

{
n∑
i=1

(
yi(w

>xi) + log
e−w

>xi

1 + e−w>xi

)}
= − argmin

w

{
−

n∑
i=1

(
yi(w

>xi) + log
e−w

>xi

1 + e−w>xi

)}
.

Therefore, it is equivalent to consider the loss function

f(w) =
1

n

n∑
i=1

h(w, (xi, yi))

where

h(w, (x, y)) = −y(w>x)− log
e−w

>x

1 + e−w>x
.

6

Note that

∇wh(w, (x, y)) = −yx+ x+∇w log
(

1 + e−w
>x
)

=

(
1

1 + e−w>x
− y
)
x = (gw(x)− y)x.

Then SGD minimizing the loss function f would proceed with

wt+1 = wt − ηt(gwt(xt)− yt)xt

where wt is the current coefficient vector and (xt, yt) is the data point obtained for iteration t.

7

	Outline
	Stochastic Optimization
	Stochastic Gradient Descent
	Perceptron Algorithm
	Support Vector Machine
	Logistic Regression

