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1 Outline

In this lecture, we study

• proximal gradient descent,

• ISTA and FISTA for LASSO,

• accelerated proximal gradient descent

2 Proximal Gradient Descent and ISTA

We consider the following composite convex optimization problem.

min
x∈Rd

f(x) = g(x) + h(x)

where we assume that g is a smooth convex function and h is convex. For constrained smooth
convex minimixation, we consider

min
x∈X

g(x) = min
x∈Rd

g(x) + IX (x)

where IX (x) denotes the indicator function of the convex domain X . For LASSO, we have

min
x∈Rd

1

n
‖Ax− b‖22︸ ︷︷ ︸

smooth convex function g(x)

+ λ‖x‖1︸ ︷︷ ︸
convex function h(x)

.

For the constrained case, the associated prox operator is equivalent to the projection operator, i.e.,

proxηIX (·)(x) = argmin
u∈Rd

{
ηIX (u) +

1

2
‖x− u‖22

}
= argmin

u∈X

{
1

2
‖x− u‖22

}
= projX (x).

For LASSO, we take h(x) = λ‖x‖1 whose associated prox operator is given by

proxηλ‖·‖1(x) =

max {0, |xi| − ηλ}︸ ︷︷ ︸
shirinkage operator

·sign(xi)


i∈[d]

The proximal gradient algorithm applies to this composite problem proceeds with the following
update rule.

xt+1 = proxηh(xt − η∇g(xt)).

When f is smooth with parameter β, we set the step size η = 1/β is in the smooth convex
minimization setting. Proximal Gradient Descent applied to LASSO is referred to as Iterative
Shrinkage-Thresholding Algorithm (ISTA).
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Algorithm 1 Proximal Gradient Descent

Initialize x1 ∈ Rd.
for t = 1, . . . , T do

Update xt+1 = proxηh(xt − (1/β)∇g(xt)) where β is the smoothness parameter of g.
end for
Return xT .

Theorem 6.1. Let f = g + h where g is a β-smooth convex function in the `2 norm and h is
convex. Then xT+1 returned by Proximal Gradient Descent (Algorithm 1) satisfies

f(xT+1)− f(x∗) ≤ β‖x1 − x∗‖22
2

.

Furthermore, when g is strongly convex, we deduce the following convergence result.

Theorem 6.2. Let f = g + h where g is β-smooth and α-strongly convex in the `2 norm and h is
convex. Then xT returned by Proximal Gradient Descent (Algorithm 1) satisfies

‖xT+1 − x∗‖22 ≤
(

1− α

β

)T
‖x1 − x∗‖22.

3 Nesterov’s Acceleration and FISTA

We observed that proximal gradient descent achieves a convergence rate of O(1/T ), and therefore,
ISTA solves LASSO with a convergence rate of O(1/T ). In fact, we may deduce a faster convergence
rate based on Nesterov’s acceleration. We mentioned that Nesterov’s accelerated gradient descent
guarantees a convergence rate of O(1/T 2) for smooth convex minimization. We will show that an
accelerated version of proximal gradient descent achives a rate of O(1/T 2) for the composite convex
minimization where g is smooth and convex.

The main idea behind Nesterov’s acceleration is to use “momentum”, so the algorithm is often
called gradient descent with momentum. Recall that proximal gradient descent for minimizing
g + h where g is β-smooth and convex and h is convex follows the update rule of

xt+1 = proxh/β

(
xt −

1

β
∇g(xt)

)
from a given point xt. The idea of momentum is to incorporate the direction xt − xt−1 that we
took when moving from xt−1 to xt to obtain the next iterate xt+1. Then xt+1 is determined by
not only the previous iterate xt but also xt−1 which is the one before xt. Figure 6.1 illustrates how
the idea of momentum applies. Instead of applying the gradient descent update to xt, we move a
bit further from xt along the momentum direction that we took from xt−1 to xt. Let γt > 0 be a
weight, and

yt = xt + γt(xt − xt−1).

Then we apply the primal gradient descent update on yt to obtain the next point xt+1, as follows.

xt+1 = proxh/β

(
yt −

1

β
∇g(yt)

)
.
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Figure 6.1: Illustration of Gradient Descent Update with Momentum

Algorithm 2 Accelerated Proximal Gradient Descent

Initialize x1 ∈ Rd.
Set x0 = x1.
for t = 1, . . . , T do

yt = xt + γt(xt − xt−1) for some γt > 0.

xt+1 = proxh/β

(
yt − 1

β∇g(yt)
)
.

end for
Return xT+1.

Algorithm 2 summarizes the accelerated version of proximal gradient descent that we just explained.

To provide a convergence result of the accelerated proximal gradient descent method, we need the
following lemma.

Lemma 6.3. Let u, v ∈ Rd. Then for all z ∈ Rd,

1

η
(proxηh(x)− x)>(z − proxηh(x)) + h(z) ≥ h(proxηh(x)).

Proof. Note that

proxηh(x) = argmin
z∈Rd

{
h(z) +

1

2η
‖x− z‖22

}
.

By the optimality condition, it follows that for any z ∈ Rd and g ∈ ∂h(proxηh(x)),(
g +

1

η

(
proxηh(x)− x

))>
(z − proxηh(x)) ≥ 0.

This implies that

1

η
(proxηh(x)− x)>(z − proxηh(x)) + g>(z − proxηh(x)) ≥ 0.

Here, since h is convex, we have

h(z) ≥ h(proxηh(x)) + g>(z − proxηh(x)).

Adding the two inequalities, we prove the desired bound of this lemma.

Theorem 6.4. Let f = g + h where g is a β-smooth convex function in the `2 norm and h is
convex. We set η and γt as

η =
1

β
, γt =

t− 2

t+ 1
.
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Then xT+1 returned by Accelerated Proximal Gradient Descent (Algorithm 2) satisfies

f(xT+1)− f(x∗) ≤ 2β

(T + 1)2
‖x1 − x∗‖22

where x∗ is an optimal solution to minx∈Rd f(x).

Proof. Note that Algorithm 2 is equivalent to

yt = (1− λt)xt + λtvt

xt+1 = proxh/β

(
yt −

1

β
∇g(yt)

)
vt+1 = xt +

1

λt
(xt+1 − xt)

where

λt =
2

t+ 1
.

This is because yt = xt + λt(vt − xt) and

λt(vt − xt) = λt

((
1

λt−1
− 1

)
xt +

(
1− 1

λt−1

)
xt−1

)
=
λt(1− λt−1)

λt−1
(xt − xt−1) = γt(xt − xt−1).

Moreover, we have λ1 = 1, and for t ≥ 2,

1− λt
λ2t

≤ 1

λ2t−1
.

First, as g is β-smooth,

g(xt+1) ≤ g(yt) +∇g(yt)
>(xt+1 − yt) +

β

2
‖xt+1 − yt‖22.

Next, Lemma 6.3 implies that for any z ∈ Rd,

h(xt+1) ≤ h(z) + β

(
xt+1 − yt +

1

β
∇g(yt)

)>
(z − xt+1)

= h(z) +∇g(yt)
>(z − xt+1) + β (xt+1 − yt)> (z − xt+1).

Adding these two inequalities, we deduce that

f(xt+1) ≤ h(z) + g(yt) +∇g(yt)
>(z − yt) + β (xt+1 − yt)> (z − xt+1) +

β

2
‖xt+1 − yt‖22

≤ f(z) + β (xt+1 − yt)> (z − xt+1) +
β

2
‖xt+1 − yt‖22

where the second inequality follows from convexity of g. By setting z = x∗ and z = xt, we have

f(xt+1)− f(x∗) ≤ β (xt+1 − yt)> (x∗ − xt+1) +
β

2
‖xt+1 − yt‖22

f(xt+1)− f(xt) ≤ β (xt+1 − yt)> (xt − xt+1) +
β

2
‖xt+1 − yt‖22.
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Summing up the first inequality multiplied by λt and the second one multiplied by (1−λt), we get

f(xt+1)− f(x∗)− (1− λt)(f(xt)− f(x∗))

≤ β (xt+1 − yt)> (λtx
∗ + (1− λt)xt − xt+1) +

β

2
‖xt+1 − yt‖22

=
β

2
(xt+1 − yt)>(2λtx

∗ + 2(1− λt)xt − xt+1 − yt)

=
β

2
‖yt − (1− λt)xt − λtx∗‖22 −

β

2
‖xt+1 − (1− λt)xt − λtx∗‖22

=
βλ2t

2
‖vt − x∗‖22 −

βλ2t
2
‖vt+1 − x∗‖22.

This implies that

1

λ2t
(f(xt+1)− f(x∗)) +

β

2
‖vt+1 − x∗‖22 ≤

1− λt
λ2t

(f(xt)− f(x∗)) +
β

2
‖vt − x∗‖22

≤ 1

λ2t−1
(f(xt)− f(x∗)) +

β

2
‖vt − x∗‖22

...

≤ 1

λ21
(f(x2)− f(x∗)) +

β

2
‖v2 − x∗‖22

≤ 1− λ1
λ21

(f(x1)− f(x∗)) +
β

2
‖v1 − x∗‖22

=
β

2
‖v1 − x∗‖22

=
β

2
‖x1 − x∗‖22.

Therefore, it follows that

f(xT+1)− f(x∗) ≤
βλ2T

2
‖x1 − x∗‖22 =

2β

(T + 1)2
‖x1 − x∗‖22,

as required.

Hence, the convergence rate is O(1/T 2), which matches the oracle lower bound. The number of
required iterations to bound the error by ε is O(1/

√
ε).

FISTA stands for Fast ISTA, that is an accelerated version of ISTA. Basically, FISTA is the
accelerated proximal gradient descent method applied to LASSO. ISTA requires O(1/ε) iterations,
while FISTA needs O(1/

√
ε) iterations to converge to an ε-approximate solution.

We generated a random instance with 300 feature variables and 100 data samples. The figure
compares the subgradient method, ISTA, and FISTA for the random LASSO instance. We can
see that FISTA has the fastest rate of convergence while ISTA is also faster than the subgradient
method.
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Figure 6.2: Comparing the subgradient method, ISTA, and FISTA for LASSO
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