
DS 801: Advanced Optimization for Data Science KAIST, Fall 2024
Lecture #5: Strongly Convexity & Regularization March 11, 2024
Lecturer: Dabeen Lee

1 Outline

In this lecture, we cover

• gradient descent for strongly convex functions,

• regularization for linear regression,

• lasso: least absolute shrinkage and selection operator.

2 Gradient Descent for Strongly Convex Functions

We say that a function is strongly convex in the `2-norm if there exists some α > 0 such that

f(x)− α

2
‖x‖22

is convex. More precisely, we say that f is α-strongly convex in the norm ‖ · ‖2. If f is α-strongly
convex, then we have

f(y) ≥ f(x) +∇f(x)>(y − x) +
α

2
‖y − x‖22.

This inequality implies that a strongly convex function is lower bounded by a quadratic function as
in the following figure. That means that, when a point is far from an optimal solution, the gradient

Figure 5.1: Quadratic lower bound on a strongly convex function

at this point has to be large. Hence, when applying gradient descent or the subgradient method,
this leads to a faster convergence.

Theorem 5.1. Let f : Rd → R be L-Lipschitz continuous and α-strongly convex in the `2-norm,
and let {xt : t = 1, . . . , T} be the sequence of iterates generated by gradient descent with step size

ηt =
2

α(t+ 1)

for each t. Then

f

(
T∑
t=1

2t

T (T + 1)
xt

)
− f(x∗) ≤ 2L2

α(T + 1)

where x∗ is an optimal solution to minx∈Rd f(x).
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If function f is β-smooth and α-strongly convex in the `2-norm, then it follows that

α

2
‖y − x‖22 ≤ (f(y)− f(x))−∇f(x)>(y − x) ≤ β

2
‖y − x‖22.

Here, we call κ = β/α the condition number of f . In fact, when f is both smooth and strongly
convex, it leads to a drastic improvement in the convergence rate. The convergence rate depends
on the condition number κ.

Theorem 5.2. Let f : Rd → R be β-smooth and α-strongly convex in the `2-norm, and let {xt :
t = 1, . . . , T + 1} be the sequence of iterates generated by gradient descent with step size

ηt =
2

α+ β

for each t. Then

f(xT+1)− f(x∗) ≤ β

2
exp

(
− 4T

κ+ 1

)
‖x1 − x∗‖22

where x∗ is an optimal solution to minx∈Rd f(x).

Note that exp(−4/(κ+1)) < 1, and therefore, the convergence rate is O(cT ) where c = exp(−4/(κ+
1)) < 1. Hence, we achieve a linear rate of convergence, and after T = O(log(1/ε)) iterations, we
have

f(xT+1)− f(x∗) ≤ ε.

3 Linear Regression Revisited

In this section, we consider linear regression again in the context of smoothness and strong convexity.
We assume that the relationship between the vector x ∈ Rd of features and the response variable
y ∈ R is modeled using a linear equation given by

y = θ>truex+ ε

where:

• θtrue ∈ Rd is the coefficient vector,

• ε ∈ R is the noise term representing unexplained variation.

Note that the equation has no bias term for simplicity. As before, we infer the true coefficient
vector θtrue using the method of least squares, which minimizes the average of squared differences
between the observed and predicted values of y. Namely, given a set of n data (x1, y1), . . . , (xn, yn),
we solve

min
θ

1

n

n∑
i=1

(
yi − θ>xi

)2
= min

θ

1

n
‖Y −Xθ‖22. (5.1)

Here, Y denotes the vector whose components are y1, . . . , yn, and X denotes the matrix whose rows
are x>1 , . . . , x

>
n . Note that

f(θ) :=
1

n
‖Y −Xθ‖22 =

1

n
θ>X>Xθ − 2

n
Y >Xθ +

1

n
Y >Y.
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Since X>X is positive semidefinite, it follows that the MSE loss f(θ) is convex. Moreover, f(θ) is
α-strongly convex and β-smooth in the `2-norm with

α =
1

n
λmin(X>X) and β =

1

n
λmax(X>X)

where λmin(X>X) and λmax(X>X) denote the minimum and maximum eigenvalues of X>X. As
long as X is a nonzero matrix, we have λmax(X>X) > 0. However, we can have λmin(X>X) = 0
when the rank of X>X is lower than the number of features d.

Data-Rich Regime Recall that n is the number of data and d is the number of features. When
n ≥ d, then it is possible that X is of full column rank, in which case X>X is invertible. If X>X
is invertible, it is positive definite, and therefore, we have α = λmin(X>X)/n > 0. In this case, the
MSE loss f(θ) is indeed strongly convex. Another Remark is that if X>X is invertible, then

θrichopt := argminθ
1

n
‖Y −Xθ‖22 = (X>X)−1X>y

because

∇f(θ) =
2

n
X>(Xθ − y).

Data-Poor Regime When n < d, then the rank of X is less than d, which means that X>X is
not of full rank and thus X>X is not invertible. In this case, we have α = λmin(X>X)/n = 0, and
therefore, the MSE loss f(θ) is not strongly convex. When X>X is not invertible, we have

θpooropt := argminθ
1

n
‖Y −Xθ‖22 = (X>X)†X>y

where (X>X)† denotes the Moore-Penrose pseudo-inverse of X>X.

3.1 Gradient Descent for Minimizing the MSE Loss

We generated a random instance with 75 feature variables and 100 data samples. To consider a
data-poor regime, we randomly selected 30 samples from the data set. Recall that θtrue denotes
the true coefficient vector in the linear model y = θ>truex+ ε.

The following figures map loss convergence patterns under the data-rich and data-poor regimes.
The figures show that gradient descent quickly minimizes the MSE loss under both regimes.

Figure 5.2: Loss convergence patterns under the data-rich regime (Left) and the data-poor regime
(Right)
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Let us verify whether gradient descent returns solutions that converge to the optimal model min-
imizing the MSE loss. Recall that θrichopt = (X>X)−1X>y is the model minimizing the MSE loss

under the data-rich regime while θpooropt = (X>X)†X>y is the model minimizing the MSE loss under
the data-poor regime. Figure 5.3 reports the distances between models θ generated by gradient
descent and the optimal model under each regime. Here, the purple line shows the squared norm of

Figure 5.3: Convergence to the optimal model under the data-rich regime (Left) and the data-poor
regime (Right)

θrichopt and that of θpooropt , given by ‖θrichopt ‖22 and ‖θpooropt ‖22, respectively. The red line depicts ‖θ−θpooropt ‖22
under the data-poor regime, while the blue one shows ‖θ − θrichopt ‖22 under the data-rich regime.
Figure 5.3 shows that the solution deduced by gradient descent under the data-rich regime indeed
seems to converge to the optimal vector minimizing the MSE loss, but that under the data-poor
regime does not. This is because the MSE loss is no longer strongly convex under the data-poor
regime.

In Figure 5.4, we report the distances between each model θ generated by gradient descent and the
true coefficient vector θtrue. Here, the green line shows the squared norm of θtrue, given by ‖θtrue‖22.

Figure 5.4: Convergence to the true model

The red line depicts ‖θ− θtrue‖22 under the data-poor regime, while the blue one shows ‖θ− θtrue‖22
under the data-rich regime. Figure 5.4 shows that the solution deduced by gradient descent under
the data-rich regime indeed seems to converge to the actual true coefficient vector, but that under
the data-poor regime does not.
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3.2 `2-Regularized Least Squares

We discussed that the MSE loss under the data-poor regime is not strongly convex. In practice, it
is often desirable to add an `2-regularization term, which makes the resulting loss function strongly
convex. To be more precise, we consider

min
θ

1

n
‖Y −Xθ‖22 + λ‖θ‖22 (5.2)

for some positive λ. Note that the regularized loss is α-strongly convex and β-smooth in the `2-norm
with

α =
1

n
λmin(X>X) + λ and β =

1

n
λmax(X>X) + λ.

Hence, as long as λ > 0, the regularized loss is strongly convex. As X>X + αI is positive definite,
the model minimizing the regularized loss is given by

θopt := argminθ
1

n
‖Y −Xθ‖22 + λ‖θ‖22 = (X>X + λI)−1X>y.

In Figure 5.5, we report the distances between each model θ generated based on the regularized
loss and the true coefficient vector θtrue. Here, the green line shows the squared norm of θtrue, given

Figure 5.5: Convergence to the true model under regularization

by ‖θtrue‖22. The orange line depicts ‖θ − θtrue‖22 for the regularized loss, while the red one shows
‖θ − θtrue‖22 for the original MSE loss. We see that

Let us also check convergence to the optimal model minimizing the regularized loss. Recall that
θopt = (X>X+λI)−1X>y is the model minimizing the regularized loss. Here, the purple line shows
the squared norm of θopt given by ‖θopt‖22. The orange line depicts ‖θ − θopt‖22 for the regularized
loss, while the red one shows ‖θ − θopt‖22 for the original MSE loss.

4 LASSO: Least Absolute Shrinkage and Selection Operator

Recall the formulation of LASSO, given by

min
θ

1

n
‖y −Xθ‖22 + λ‖θ‖1.
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Figure 5.6: Convergence to the optimal model under regularization

Here, the objective function is non-differentiable because of the `1-regularization term λ‖θ‖1, and
therefore, it is non-smooth. On the other hand, the objective is convex, and we have a character-
ization of the subdifferential of ‖θ‖1, so we can simply apply the subgradient method. To bound
the additive error by ε, the subgradient method requires O(1/ε2) iterations.

If you take a closer look at the objective, it consists of two part. One part is smooth, and the other
part is something whose subdifferential is well understood. Can we use this structure to obtain a
better algorithm? The main subject of this section is developing an algorithm that converges to an
ε-approximate solution after O(1/ε) iterations.

4.1 Projection and Proximal Operator

We studied the projected gradient descent method, where at each step, we take a projection to the
constraint set. When the constraint set is given by X , the projection operator is given by

ProjX (x) = argmin
u∈X

1

2
‖u− x‖22 = argmin

u∈Rd

{
IX (u) +

1

2
‖u− x‖22

}
where IX (u) is the indicator function of X . This definition is proper as there is a unique minimizer
for the optimization problem. Hence, the projection operator is defined by the indicator function
and the proximity term (1/2)‖u− x‖22. The proximal operator is a generalization of the projection
operator replacing the indicator function by other general functions.

The proximal operator with respect to a convex function h is defined as follows.

Proxh(x) = argmin
u∈Rd

{
h(u) +

1

2
‖u− x‖22

}
.

Again the definition is proper because the objective of the optimization problem is strongly convex.
Hence, for any η > 0,

Proxηh(x) = argmin
u∈Rd

{
h(u) +

1

2η
‖u− x‖22

}
.

As projected gradient descent proceeds with the update rule

xt+1 = ProjX {xt − η∇f(xt)} ,
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we can defined the proximal gradient method with the update rule

xt+1 = Proxηh(xt − η∇f(xt)).

In particular, when we take the indicator function IC for h, the proximal gradient method reduces
to the projeced gradient descent method.

Lemma 5.3. u = proxηh(x) if and only if x− u ∈ η∂h(u).

Proof. Note that u = proxηh(x) means that u minimizes h(u) + (1/2η)‖u− x‖22. By the optimality
condition, it is equivalent to 0 ∈ ∂h(u)+{(1/η)(u− x)}, and this is equivalent to x−u ∈ η∂h(u).

4.2 Shrinkage Operator

Consider h(x) = ‖x‖1. Then

proxηh(x) = argmin
u∈Rd

{
‖u‖1 +

1

2η
‖u− x‖22

}
.

Let u = proxηh(x). Then, by Lemma 5.3,

x− u ∈ η∂‖u‖1.

Recall that g ∈ ∂‖u‖1 if and only if

gi =

{
sign(ui), if ui 6= 0,

a value in [−1, 1], if ui = 0.

Based on this, we can argue that x− u ∈ η∂‖u‖1 if and only if

ui =


xi − η, if xi ≥ η,
0, if −η ≤ xi ≤ η.
xi + η, if xi ≤ −η.

Moreover, x− u ∈ η∂‖u‖1 if and only if

ui = max{0, |xi| − η} · sign(xi).

For example,
proxh((3, 1,−2)>) = (2, 0,−1)>.

Note that when h = ‖x‖1, the corresponding proximal operator “shrinks” the vector. For this
reason, the operator is called the self-thresholding operator or the shrinkage operator.

7


	Outline
	Gradient Descent for Strongly Convex Functions
	Linear Regression Revisited
	Gradient Descent for Minimizing the MSE Loss
	2-Regularized Least Squares

	LASSO: Least Absolute Shrinkage and Selection Operator
	Projection and Proximal Operator
	Shrinkage Operator


