
DS 801: Advanced Optimization for Data Science KAIST, Fall 2024
Lecture #4: Gradient Descent for Smooth Functions & AdaGrad March 6, 2024
Lecturer: Dabeen Lee

1 Outline

In this lecture, we cover

• projected subgradient method,

• gradient descent for smooth functions,

• adaptive gradient (AdaGrad).

2 Convergence of Gradient Descent for Smooth Functions

Remember that gradient descent for a Lipschitz continuous function has a conergence rate of
O(1/

√
T) and uses a constant step size of order O(1/

√
T). In this section, we consider smooth

convex functions for which gradient descent achieves a faster convergence rate.

We say that a differentiable function f : Rd → R is β-smooth with respect to the ℓ2 norm for some
β > 0 if

∥∇f(x)−∇f(y)||2 ≤ β∥x− y∥2
holds for any x, y ∈ Rd. Smooth functions have the self-tuning property! By the optimality
condition (for unconstrained problmes), we have ∇f(x∗) = 0 for any optimal solution x∗. Then
the smoothness assumption implies that the gradient gets close to 0 as we approach an optimal
solution. This is in contrast to a non-differentiable function, e.g., f(x) = |x| over R.

Figure 4.1: Smooth functions vs non-smooth functions

Recall that the gradient descent method for Lipschitz continuous functions requires a constant but
small step size O(1/

√
T) where T is the total number of iterations. This is partly because the

subgradient does not get smaller even when we get realy close to an optimal solution. In contrast,
for smooth functions, we can take large step sizes, because the gradient gets reduced as we converge
to an optimal solution. This is referred to as the self-tuning property.

Next we prove the convergence result for smooth function. The first thing we observe is that a
gradient step for a smooth function can always guarantee a strict improvement. To explain this,
take a differentiable and β-smooth function f : Rd → R.

Lemma 4.1. If f is β-smooth in the ℓ2 norm, then∣∣∣f(y)− f(x)−∇f(x)⊤(y − x)
∣∣∣ ≤ β

2
∥y − x∥2.

1

Proof. By the fundamental theorem of calculus and the Cauchy-Schwarz inequality, we obtain the
following. ∣∣∣f(y)− f(x)−∇f(x)⊤(y − x)

∣∣∣ = ∣∣∣∣∫ 1

0
(y − x)⊤ (∇f(x+ t(y − x))−∇f(x)) dt

∣∣∣∣
≤
∫ 1

0
∥y − x∥2 ∥∇f(x+ t(y − x))−∇f(x)∥2 dt

≤
∫ 1

0
βt∥y − x∥22dt

=
β

2
∥y − x∥22

where the equality is due to the fundamental theorem of calculus, the first inequality is by the
Cauchy-Schwarz inequality, and the second inequality is from the β-smoothness of f .

Consider a gradient step given by

xt+1 = xt − ηt∇f(xt).

Note that

f(xt+1) ≤ f(xt) +∇f(xt)
⊤(xt+1 − xt) +

β

2
∥xt+1 − xt∥22

= f(xt) +

(
−ηt +

η2t β

2

)
∥∇f(xt)∥22

≤ f(xt)−
1

2β
∥∇f(xt)∥22

where the first inequality follows from the β-smoothness of f and the second inequality is because
the term inside the parenthesis is a quadratic function in ηt which can be maximized at ηt = 1/β.
Therefore, when ηt = 1/β, we obtain

f(xt+1) ≤ f(xt)−
1

2β
∥∇f(xt)∥22,

which implies that f(xt+1) is strictly better than f(xt) when xt is not an optimal solution. Based
on this observation, we can prove the following convergence result for smooth functions.

Theorem 4.2. Let f : Rd → R be β-smooth in the ℓ2-norm and convex, and let {xt : t = 1, . . . , T +
1} be the sequence of iterates generated by gradient descent with step size

ηt =
1

β

for each t. Then

f(xT+1)− f(x∗) ≤ β∥x1 − x∗∥22
2T

where x∗ is an optimal solution to minx∈Rd f(x).

2

Proof. Note that

f(xt+1) ≤ f(xt)−
1

2β
∥∇f(xt)∥22

≤ f(x∗)−∇f(xt)
⊤(x∗ − xt)−

1

2β
∥∇f(xt)∥22

= f(x∗) +
β

2

(
∥xt − x∗∥22 − ∥xt+1 − x∗∥22

)
where the second inequality is because f(xt) + ∇f(xt)

⊤(x − xt) is a lower bound on f and the
equality follows because xt+1 = xt − (1/β)∇f(xt). This implies that

f(xt+1)− f(x∗) ≤ β

2

(
∥xt − x∗∥22 − ∥xt+1 − x∗∥22

)
,

summing which over t = 1, . . . , T and dividing the resulting one by T , we obtain

1

T

T∑
t=1

f(xt+1)− f(x∗) ≤ β

2T

(
∥x1 − x∗∥22 − ∥xT+1 − x∗∥22

)
≤ β

2T
∥x1 − x∗∥22.

Recall that each gradient step for smooth functions leads to an improvement, i.e., f(xt+1) ≤ f(xt).
Therefore,

f(xT+1)− f(x∗) ≤ 1

T

T∑
t=1

f(xt+1)− f(x∗) ≤ β

2T
∥x1 − x∗∥22,

as required.

The important takeaway is that we took a constant step size 1/β, which does not depend on the
number of iterations T . This is due to the self-tuning property of smooth functions. Although we
do not shrink the step size, the change between the current iterate xt and the next iterate xt+1 gets
reduced as we approach an optimal solution.

As discussed before, the term ∥x1 − x∗∥2 and the smoothness parameter β are all fixed constants.
Hence, the convergence rate is O(1/T). Therefore, after T = O(1/ϵ) iterations, we have

f(xT+1)− f(x∗) ≤ ϵ.

Note that the convergence results for smooth functions improves over O(1/
√
T) and O(1/ϵ2) for

the subgradient method.

3 Projected Subgradient Method

The first-order characterization of convex functions states that a differentiable function f is convex
if and only if dom(f) is convex and

f(y) ≥ f(x) +∇f(x)⊤(y − x)

for all x, y ∈ dom(f). For a non-differentiable function, we can define the notion of subgradients
as well as subdifferentials.

Definition 4.3. Given a convex function f : Rd → R and a point x ∈ dom(f), the subdifferential
of f at x is defined as

∂f(x) =
{
g : f(y) ≥ f(x) + g⊤(y − x) ∀y ∈ dom(f)

}
.

Here, any g ∈ ∂f(x) is called a subgradient of f at x.

3

Conversely, the subdifferential is the set of subgradients. If function f is differentiable at x, then
we have ∂f(x) = {∇f(x)}, and therefore, the subdifferential reduces to the gradient. In contrast,
a non-differentiable function may have more than one subgradient. Moreover, note that for any
subgradient g at x, f(x) + g⊤(y − x) provies a lower approximation of the function f .

Recall that for a differentiable univariate function f , the gradient of f at some point x is the slope
of the line tangent to f at x. We have a similar geometric intuition for subgradients. Consider the
the absolute value function f(x) = |x| over x ∈ R, which is not differentiable at x = 0. As depicted

Figure 4.2: Subgradients of f(x) = |x| at x = 0

in Figure 4.2, there are multiple lines that are below f(x) = |x| and go through x = 0. In fact, the
subdifferential of f can be computed as follows.

∂f(x) =

{−1} = {sign(x)}, for x < 0

[−1, 1], for x = 0

{+1} = {sign(x)}, for x > 0

=

{
{sign(x)}, for x ̸= 0

[−1, 1], for x = 0.

Let us consider a few more examples.

Example 4.4. Let f(x) = ∥x∥1 : Rd → R. Then the subdifferential of f at any point x =
(x1, . . . , xd)

⊤ is the set of vectors g = (g1, . . . , gd)
⊤ such that for each i ∈ [d],

gi =

{
sign(xi), if xi ̸= 0

[−1, 1], if xi = 0.
.

We discussed the gradient descent method for minimizing a differentiable convex function. For
non-differentiable convex functions, we can consider subgradients and use the subgradient method
described as follows.

Algorithm 1 Projected Subgradient Method

Initialize x1 ∈ X .
for t = 1, . . . , T do

Obtain a subgradient gt ∈ ∂f(xt).
xt+1 = ProjX (xt − ηtgt) for a step size ηt > 0.

end for

In Algorithm 1, we have the operation ProjX (xt − ηtgt). Here, the operator ProjX (·) is the pro-
jection operator defined as

ProjX (x) = argmin
y∈X

∥x− y∥2.

4

Lemma 4.5. Let u, v ∈ Rd. Then

∥ProjX (u)− ProjX (v)∥2 ≤ ∥u− v∥2.

Proof. Note that

ProjX (x) = argmin
y∈X

1

2
∥x− y∥22.

By the optimality condition, it follows that

(ProjX (x)− x)⊤(y − ProjX (x)) ≥ 0

for all y ∈ X . Equivalently,

(ProjX (x)− x)⊤(ProjX (x)− y) ≤ 0 for all y ∈ X .

Next let us consider two points u, v and their projections onto C, given by ProjC(u) and ProjC(v),
respectively. Then we have

(ProjC(u)− u)⊤(ProjC(u)− ProjC(v)) ≤ 0,

(ProjC(v)− v)⊤(ProjC(v)− ProjC(u)) ≤ 0.

Adding these two inequalities, we obtain

∥ProjC(u)− ProjC(v)∥22 − (u− v)⊤(ProjC(u)− ProjC(v)) ≤ 0.

Then it follows from the Cauchy-Schwarz inequality that ∥ProjC(u) − ProjC(v)∥2 ≤ ∥u − v∥2, as
required.

We will show that the subgradient method given by Algorithm 1 converges if the subgradients of f
are bounded. Recall that for the differentiable case, the ℓ2 norm of f ’s gradient is bounded if and
only if f is Lipschitz continuous.

Theorem 4.6. Let f : Rd → R be a convex function such that ∥g∥2 ≤ L for any g ∈ ∂f(x) for
every x ∈ Rd. Let {xt : t = 1, . . . , T} be the sequence of iterates generated by the subgradient method
with step size

ηt =
C√
T

for each t for some constant C. Then

f

(
1

T

T∑
t=1

xt

)
− f(x∗) ≤ C ′

√
T

for some constant C ′ where x∗ is an optimal solution to minx∈X f(x).

Proof. Let η = C/
√
T . Note that

∥xt+1 − x∗∥22 = ∥ProjX (xt − ηgt)− ProjX (x
∗)∥22

≤ ∥xt − ηgt − x∗∥22
= ∥xt − x∗∥22 − 2ηg⊤t (xt − x∗) + η2∥gt∥22
≤ ∥xt − x∗∥22 − 2η(f(xt)− f(x∗)) + η2∥gt∥22

5

where the first inequality follows from Lemma 4.5 and the second inequality follows from f(x∗) ≥
f(xt) + g⊤t (x

∗ − xt) as gt is a subgradient at xt. Then it follows that

f

(
1

T

T∑
t=1

xt

)
− f(x∗) ≤ 1

T

T∑
t=1

f(xt)− f(x∗) ≤ ∥x1 − x∗∥22
2ηT

+
η

2
L2 ≤ 1√

T

(
∥x1 − x∗∥22

2C
+

CL2

2

)
,

as required.

Here, the step size η has the order of O(1/
√
T) when we run the subgradient method for T iterations.

Then the convergence rate is O(1/
√
T), and the number of required iterations to bound the error

by ϵ is O(1/ϵ2).

4 Adaptive Gradient Method

We observed that the performance of gradient descent heavily depends on our choice of learning
rates. We have discussed how to choose learning rates to achieve the best theoretical convergence
guarantee. For example, for a β-smooth function, our choice was η = 1/β. However, to implement
this choice of learning rate, we need to know the smoothness parameter β, which can be difficult
in practice.

In this section, we study what is known as adaptive gradient (AdaGrad), which is a variant
of gradient descent that automatically adapt to the problem structure such as smoothness and
Lipschitz continuity, AdaGrad deploys a schedule of learning rates that do not require knowledge
of the smoothness parameter β and the Lipschitz continuity constant L. Moreover, AdaGrad
achieves a convergence rate of order O(1/

√
T) for Lipschitz continuous functions and a convergence

rate of order O(1/T) for smooth functions.

Algorithm 2 AdaGrad

Initialize x1 ∈ X and S0 = 0.
for t = 1, . . . , T do

Obtain a subgradient gt ∈ ∂f(xt).
Set St = St−1 + ∥gt∥22 and ηt = R/

√
2St.

Update xt+1 = ProjX (xt − ηtgt).
end for

In Algorithm 2, R denotes an upper bound on the diameter of X , i.e., R ≥ supu,v∈X ∥u− v∥2. The
following lemma holds under AdaGrad, and it will be used to provide convergence guarantees for
AdaGrad.

Lemma 4.7. Let f : Rd → R be a function. Let {xt : t = 1, . . . , T} be the sequence of iterates
generated by AdaGrad. Then

T∑
t=1

g⊤t (xt − x∗) ≤

√√√√2R2

T∑
t=1

∥gt∥22.

Proof. Note that

∥xt+1 − x∗∥22 ≤ ∥xt − ηtgt − x∗∥22
= ∥xt − x∗∥22 − 2ηtg

⊤
t (xt − x∗) + η2t ∥gt∥22.

6

Then it follows that

T∑
t=1

g⊤t (xt − x∗) ≤ ∥x1 − x∗∥22
2η1

+

T∑
t=1

∥xt − x∗∥22
2

(
1

ηt
− 1

ηt−1

)
+

T∑
t=1

ηt
2
∥gt∥22

≤ R2

2ηT
+

T∑
t=1

ηt
2
∥gt∥22

≤ R

2

√
2ST +

R

2
√
2

T∑
t=1

∥gt∥22√
St

.

It is known that for any non-negative numbers a1, . . . , an, we have

n∑
i=1

ai√∑i
j=1 aj

≤ 2

√√√√ n∑
i=1

ai.

Applying this inequality, it follows that

T∑
t=1

g⊤t (xt − x∗) ≤ R

2

√
2ST +

R√
2

√
ST =

√√√√2R2

T∑
t=1

∥gt∥22,

as required.

Based on Lemma 4.7, we can prove the following theorem which states that AdaGrad guarantees
a convergence rate of O(1/

√
T).

Theorem 4.8. Let f : Rd → R be a convex function such that ∥g∥2 ≤ L for any g ∈ ∂f(x) for
every x ∈ Rd. Let {xt : t = 1, . . . , T} be the sequence of iterates generated by AdaGrad. Then

f

(
1

T

T∑
t=1

xt

)
− f(x∗) ≤ LR

√
2√

T
.

Next, we consider smooth functions. To analyze AdaGrad for smooth functions, we need the
following lemma on smooth functions.

Lemma 4.9. Let f : Rd → R be a convex function. If f is β-smooth, then for any x, y ∈ Rd,

f(y) ≥ f(x) +∇f(x)⊤(y − x) +
1

2β
∥∇f(x)−∇f(y)∥22.

Proof. Since f is β-smooth, we have

f(z) ≤ f(x) +∇f(x)⊤(z − x) +
β

2
∥z − x∥22 for any z ∈ Rd.

Then taking z = y + (1/β)(∇f(x)−∇f(y)),

f(x)− f(y) = f(x)− f(z) + f(z)− f(y)

≤ −∇f(x)⊤(z − x) +∇f(y)⊤(z − y) +
β

2
∥z − y∥22

= ∇f(x)⊤(x− y) + (∇f(x)−∇f(y))⊤(y − z) +
β

2
∥z − y∥22

= ∇f(x)⊤(x− y)− 1

2β
∥∇f(x)−∇f(y)∥22.

7

Then it follows that

1

2β
∥∇f(x)−∇f(y)∥22 ≤ f(y)− f(x) +∇f(x)⊤(x− y),

as required.

The following theorem states that AdaGrad guarantees a convergence rate of O(1/T) for smooth
functions.

Theorem 4.10. Let f : Rd → R be a convex function that is β-smooth. Let {xt : t = 1, . . . , T} be
the sequence of iterates generated by AdaGrad. Then

f

(
1

T

T∑
t=1

xt

)
− f(x∗) ≤ βR2

T

where x∗ is an optimal solution to minx∈Rd f(x).

Proof. By Lemma 4.9, we have

f(xt)− f(x∗) ≤ ∇f(xt)
⊤(xt − x∗)− 1

2β
∥∇f(xt)∥22,

which implies that

f

(
1

T

T∑
t=1

xt

)
− f(x∗) ≤ 1

T

T∑
t=1

∇f(xt)
⊤(xt − x∗)− 1

2βT

T∑
t=1

∥∇f(xt)∥22.

Moreover, by Lemma 4.7, we deduce that

f

(
1

T

T∑
t=1

xt

)
− f(x∗) ≤ 1

T

√√√√2R2

T∑
t=1

∥∇f(xt)∥22 −
1

2βT

T∑
t=1

∥∇f(xt)∥22.

Here, √√√√2R2

T∑
t=1

∥∇f(xt)∥22 −
1

2β

T∑
t=1

∥∇f(xt)∥22 ≤ max
z≥0

{
Rz

√
2− 1

2β
z2
}

= βR2.

Therefore, it follows that

f

(
1

T

T∑
t=1

xt

)
− f(x∗) ≤ βR2

T
,

as required.

The convergence guarantees of AdaGrad provided by Theorems 4.8 and 4.10 have the same asymp-
totic rates as those of gradient descent. Gradient descent, however, need to adjust learning rates
based on whether a given function is smooth of Lipschitz continuous. In contrast, the adaptive
schedule of learning rates of AdaGrad automatically adapt to the structure of a given function.

8

	Outline
	Convergence of Gradient Descent for Smooth Functions
	Projected Subgradient Method
	Adaptive Gradient Method

