
DS 801: Advanced Optimization for Data Science KAIST, Fall 2024
Lecture #2: Introduction to Convex Optimization February 28, 2024
Lecturer: Dabeen Lee

1 Outline

In this lecture, we study

• convex sets and functions,

• operations preserving convexity,

• first- and second-order characterizations of convex functiosn,

• convex optimization.

2 Convex Sets and Convex Functions

2.1 Convex Sets

Definition 2.1. A set X ⊆ Rd is convex if for any u, v ∈ X and any λ ∈ [0, 1],

λu+ (1− λ)v ∈ X.

In words, the line segment joining any two points is entirely contained the set. In Figure 2.1, we
have a convex set and a non-convex set.

Figure 2.1: A convex set and a nonconvex set

There are many examples of convex sets.

1. Empty set, singletons (sets of the form {v}),

2. Norm ball: {x ∈ Rd : ‖x− c‖ ≤ r} where c is the center.

3. Ellipsoid: {x ∈ Rd : (x− c)>P (x− c) ≤ 1} where P is positive definitie and c is the center.

4. Hyperplane: {x ∈ Rd : a>x = b} where a ∈ Rd and b ∈ R.

5. Half-space: {x ∈ Rd : a>x ≤ b} where a ∈ Rd and b ∈ R.

6. Polyhedron: A polyhedron is a finite intersection of half spaces, {x ∈ Rd : Ax ≤ b} where
A ∈ Rm×d and b ∈ Rm. Here, Ax ≤ b is a short-hand notation for system a>k x ≤ bk for
k ∈ [m].
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7. Polytope: A polytope is a polyhedron that is bounded. Equivalently, a polytope is the convex
hull of some finite set of vectors.

8. Simplex: A set of the form {x ∈ Rd : 1>x = 1, x ≥ 0}, which is equal to the convex hull of
e1, . . . , ed, the d-dimensional unit vectors.

9. Nonnegative orthant: Rd+ = {x ∈ Rd : x ≥ 0}.

10. Positive orthant: Rd++ = {x ∈ Rd : x > 0}.

11. Norm cone: {(x, t) ∈ Rd ×R : ‖x‖ ≤ t}. When ‖ · ‖ is the Euclidean norm, the cone is called
the second-order cone.

12. Positive semidefinite cone: The set of all positive semidefinite matrices of a fixed dimension.

2.2 Convex Functions

Definition 2.2. A function f : Rd → R is convex if the domain, denoted dom(f), is convex and
for all x, y ∈ dom(f), we have

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) for 0 ≤ λ ≤ 1.

In words, function f evaluated at a point between x and y lies below the line segment joining f(x)
and f(y).

Figure 2.2: Illustration of a convex function in R2

Definition 2.3. We say that f : Rd → R is concave if −f is convex.

Definition 2.4. A function f : Rd → R is

• strictly convex if dom(f) is convex and for any distinct x, y ∈ dom(f), we have

f(λx+ (1− λ)y) < λf(x) + (1− λ)f(y) for 0 < λ < 1.

• strongly convex if f(x)− α‖x‖2 is convex for some α > 0 and norm ‖ · ‖.

Note that strong convexity implies strict convexity, and strict convexity implies convexity.

There are many examples of convex functions.

• Exponential function: eax for any a ∈ R.
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• Power function: xa for a ≥ 1 over R+ and xa for a < 0 over R++.

xa for 0 ≤ a < 1 over R+ is concave.

• Logarithm: log x is concave on R++.

• Negative entropy: x log x on R++.

• Linear function: a>x+ b where a ∈ Rd and b ∈ R are both convex and concave.

• Quadratic function: 1
2x
>Ax+ b>x+ c where A � 0, b ∈ Rd, and c ∈ R.

• Least squares loss: ‖b−Ax‖22 for any A.

• Norm: Any norm ‖ · ‖ is concex, because a norm is subadditive and homogeneous.

• Maximum eigenvalue of a symmetric matrix.

• Indicator function: When C is convex, its indicator function, given by,

IC(x) =

{
0, x ∈ C
∞, x /∈ C

is convex.

• Support function: Given a convex set C, its support function is defined as

I∗C(x) = sup
y∈C

{
y>x

}
.

• Conjugate function: Given an arbitrary function f : Rd → R, the conjugate function f∗ is
defined as

f∗(x) = sup
y∈Rd

{
y>x− f(y)

}
.

Example 2.5. Recall the linear regression problem with a given set of data (x1, y1), . . . , (xn, yn).
We considered the mean squared error given by

1

n

n∑
i=1

(yi − w>xi)2.

Let y denote the vector whose components are y1, . . . , yn, and let X denote the matrix whose rows
are x>1 , . . . , x

>
n . Then it follows that

1

n

n∑
i=1

(yi − w>xi)2 =
1

n
‖y −Xw‖22.

Here, we know that ‖y−Xw‖22 is convex in w, so the mean squared loss is a convex function of w.

2.3 Operations Preserving Convexity

For many problems, it is important to recognize underlying convex structures. We can determine
whether certain sets and functions are convex by understanding basic rules. Moreover, based on
these rules, we can build complex convex sets and functions from simpler ones.

3



Set Operations We first consider set operations that preserve convexity.

• Intersection: The intersection of any (possibly infinite) collection of covex sets is convex.

• Scaling: Given a convex set C and α ∈ R,

αC = {αx : x ∈ C}.

• Minkowski sum: Given convex sets Ci ⊆ Rd for i = 1, . . . , k, the Minkowski sum of them,
defined by

C1 + · · ·+ Ck = {x1 + · · ·+ xk : xi ∈ Ci for i = 1, . . . , k}

is convex.

• Cartesian Product: Given convex sets Ci ⊆ Rdi for i = 1, . . . , k, the Cartesian product of
them, defined by

C1 × · · · × Ck = {(x1, . . . , xk) ∈ Rd1 × · · · × Rdk : xi ∈ Ci for i = 1, . . . , k}

is convex.

• Affine image: Given a convex set C and matrices A ∈ Rp×d, b ∈ Rp, we define an affine
mapping f(x) = Ax+ b : Rd → Rp. Then

f(C) = {Ax+ b : x ∈ C}.

• Inverse affine image: Given a convex set C and matrices A ∈ Rp×d, b ∈ Rp, we define an
affine mapping f(x) = Ax+ b : Rd → Rp. Then

f−1(C) = {x : Ax+ b ∈ C}.

Function Operations We next consider function operations preserving convexity.

• Nonnegative weighted sum: Let f1, . . . , fk : Rd → R be convex functions. Then for any
α1, . . . , αk ≥ 0,

α1f1 + · · ·+ αkfk

is convex.

• Maximum of arbitrary collection of convex functions: Let {fγ}γ∈Γ be a collection of convex
functions. Then maxγ∈Γ fγ is also convex. Here, Γ may be infinite.

• Minimizing out variables: Let g(x, y) be convex function in (x, y). Define f by f(x) =
infy∈C g(x, y) for some convex set C. Then f is convex.

• Perspective function: Let g(x) be a convex function. Then f(x, t) = tg(x/t) is a convex
function in (x, t) ∈ Rd × R++. Here, f is called the perspective of g.

• Affine composition: Let g : Rp → R be a convex function, and take matrices A ∈ Rp×d,
b ∈ Rp. Then f : Rd → R defined by f(x) = g(Ax+ b) is convex.

• Compositions: Let h : R → R be a univariate non-decreasing convex function, and let g :
Rd → R be convex. Then f = h ◦ g is convex.
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Example 2.6. For linear regression, we considered the mean squared error with an `1-regularization
term given by

1

n

n∑
i=1

(yi − w>xi)2 + λ‖w‖1. (2.1)

We saw that the mean squared error is convex in w. Moreover, the `1 norm is also convex. As (2.1)
is the sum of two convex functions, it is a convex function.

3 First- and Second-Order Characterizations of Convex Functions

Let f : Rd → R be a function. Let ei denote the ith unit vector. For example, e1 = (1, 0, . . . , 0)>

and ed = (0, . . . , 0, 1)>. Then the ith partial derivative of f is defined as

∂f

∂xi
(x) = lim

t→0

f(x+ tei)− f(x)

t
.

Thus, the ith partial derivative is the directional derivative of f along the ith unit direction ei. If
all the partial derivatives of f exist at x ∈ Rd, then we may define the gradient of f at x, given by

∇f(x) =

(
∂f

∂x1
(x), . . . ,

∂f

∂xd
(x)

)>
.

The following results provides a first-order characterization of convex functions.

Theorem 2.7. Let f : Rd → R be a differentiable function. Then f is convex if and only if dom(f)
is convex and

f(y) ≥ f(x) +∇f(x)>(y − x)

for all x, y ∈ dom(f).

Figure 2.3: Illustration of the first-order characterization

What follows is another first-order characterization.

Theorem 2.8. Let f : Rd → R be a differentiable function. Then f is convex if and only if dom(f)
is convex and

〈∇f(x)−∇f(y), x− y〉 ≥ 0

for all x, y ∈ dom(f).

Next, we consider
∂2f

∂xi∂xj
(x) for i, j ∈ [d]
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are the second partial derivatives of f . If all the second partial derivatives exist, then we may define
the Hessian of f as follows

∇2f(x) =


∂2f
∂x21

(x) ∂2f
∂x1∂x2

(x) · · · ∂2f
∂x1∂xd

(x)

∂2f
∂x2∂x1

(x) ∂2f
∂x22

(x) · · · ∂2f
∂x2∂xd

(x)

...
...

. . .
...

∂2f
∂xd∂x1

(x) ∂2f
∂xd∂x2

(x) · · · ∂2f
∂x2d

(x)

 .

Moreover, if the second partial derivatives are continuous, then Schwarz’s theorem implies that the
Hessian is symmetric, i.e.,

∂2f

∂xi∂xj
(x) =

∂2f

∂xj∂xi
(x) for every i, j ∈ [d].

Theorem 2.9. Let f : Rd → R be a twice differentiable function1. Then f is convex if and only if
dom(f) is convex and

∇2f(x) � 0.

for all x ∈ dom(f).

4 Convex Optimization

A convex optimization problem is to minimize a convex function f over a convex domain C as
follows.

minimize f(x)

subject to x ∈ C.
(P )

It is often difficult to obtain an exact minimizer of the problem. Instead, we seek for an approxi-
mately optimal solution. Namely, for a given error tolerance ε > 0, the goal is to find a solution x
such that

f(x) ≤ min
x∈C

f(x) + ε.

We say that a solution x satisfies this condition is ε-optimal. One can predict that as ε gets
smaller, it is harder to find an ε-optimal solution. Then, how do we measure how hard it is to find
an ε-optimal solution? Here, we need some notion of computational complexity.

A computational abstraction for convex optimization is the notion of oracles. A first-order oracle
returns the gradient ∇f(x) of a given solution x. A second-order oracle returns the Hessian ∇2f(x)
of a given solution x. A zeroth-order oracle returns the objective value f(x) of a given solution x.
Here, we say that an algorithm is a first-order method if it relies on a first-order oracle. How do we
measure the complexity of an algorithm for convex optimization? Basically, we count the number
of oracle calls to find an ε-optimal solution. For example, the famous gradient descent method finds
an ε-optimal solution with O(1/ε2) first-order oracle calls. Here, we often simply say ”iterations”
instead of ”oracle calls”.

1∇2f exists at any point in dom(f), and dom(f) is open.
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