
DS 801: Advanced Optimization for Data Science KAIST, Spring 2024
Lecture #24: Bayesian Optimization June 5, 2024
Lecturer: Dabeen Lee

1 Outline

In this lecture, we cover

• motivation for Bayesian optimization,

• Bayesian linear regression,

• Gaussian process,

• Gaussian process regression,

• Gaussian process optimization.

2 Motivation for Bayesian Optimization

So far, we have covered the simultaneous optimistic optimization (SOO) algorithm, which is basi-
cally a grid search-based method, and two supervised learning-based methods, kernel ridge regres-
sion and optimization with a neural network with ReLU activation. In particular, the latter two
are based on learning “best-fit” models.

While search-based methods and best-fit methods are widely used in practice, they often fail to
deal with “expensive-to-evaluate” functions and high-dimensional search spaces. Moreover, best-
fit methods typically require a large-data regime. Hence, it is difficult to apply those methods to
application settings where it is not feasible to test the underlying objective function for many times.
Let us provide a few of such applications.

• Drug Discovery and Material Science: Evaluating the effectiveness of new compounds in drug
discovery or the properties of new materials involves expensive and time-consuming laboratory
experiments or simulations.

• A/B Testing in Marketing: In marketing, evaluating different strategies or configurations (e.g.,
ad placements, pricing strategies) often involves running A/B tests that can be expensive in
terms of time and resources.

• Engineering Design: Designing components such as aircraft wings, automotive parts, or mi-
croprocessors often involves running sophisticated simulations (e.g., computational fluid dy-
namics or finite element analysis) that can take hours or days to complete.

• Hyperparameter Tuning in Machine Learning: For a given set of hyperparameters, training
complex models like deep neural networks, support vector machines, or ensemble methods
can be time-consuming and computationally expensive.

Hence, we want to develop a method that can suggest and find a good-quality solution even with a
small amount of data on function evaluations. In this lecture, we introduce Bayesian optimiza-
tion, which is suitable for a data-poor regime.

1

Bayesian optimization essentially takes the Bayesian approach of maintaining a probabilistic
model of the unknown objective function. Based on the probabilistic model, we choose next decision
points to be evaluated. This probabilistic approach provides a measure of uncertainty about the
function’s behavior, which allows for a more strategic exploration of the search space. By cleverly
balancing exploration and exploitation, Bayesian optimization can identify optimal solutions more
efficiently and effectively. This makes Bayesian optimization particularly useful in scenarios where
function evaluation is costly.

3 Bayesian Linear Regression

As before, let us start with the case of linear models. Our hypothesis is that the unknown objective
function f is given by

f(x) = θ⊤x

where the coefficient vector θ ∈ Rd is unknown to the decision-maker. In Bayesian linear re-
gression, we assume that θ is sampled from a known prior distribution with density p(θ). A
common choice is a multivariate Gaussian distribution of the form N (0, τ2Id) where τ > 0 and Id
is the d× d identity matrix.

Suppose that we have a set D = {(x1, y1), . . . , (xn, yn)} of n i.i.d. data points sampled from some
unknown distribution. Moreover, we have

yi = θ⊤xi + ϵi, i ∈ [n]

where ϵ1, . . . , ϵn are i.i.d. noise variables sampled from a Gaussian distribution N (0, σ2) for some
σ > 0. Then we have yi − θ⊤xi ∼ N (0, σ2) with density

p (yi | xi, θ) =
1√
2πσ

exp

(
−(yi − θ⊤xi)

2

2σ2

)
.

Having obtained the data set D, we deduce the posterior distribution of the coefficient vector θ
with density

p (θ | D) =
p(θ)p(D | θ)∫

ω p(ω)p(D | ω)dω
=

p(θ)
∏n

i=1 p(yi | xi, θ)∫
ω p(ω)

∏n
i=1 p(yi | xi, ω)dω

where the first equality is due to Bayes’ rule and the second equality follows from

p(D | θ) =
n∏

i=1

p(yi | xi, θ).

Based on the posterior distribution for θ, we want to predict the response value y associated with a
solution x. This can be done by considering the posterior predictive distribution with density

p(y | x,D) =

∫
θ
p(y | x, θ)p(θ | D)dθ.

If we assume that the prior distribution is given by N (0, τ2Id) and yi − θ⊤xi ∼ N (0, σ2), then we
can derive we can characterize p(y | x, θ) and p (θ | D). Based on these, we can also compute the
posterior predictive distribution. To explain this, we define Φ and y as

Φ = (x1, . . . , xn) ∈ Rd×n, y = (y1, . . . , yn)
⊤ ∈ Rn.

2

Then it is known that

θ | D ∼ N

((
ΦΦ⊤ +

σ2

τ2
Id

)−1

Φy, σ2

(
ΦΦ⊤ +

σ2

τ2
Id

)−1
)
,

y | x,D ∼ N

(
x⊤
(
ΦΦ⊤ +

σ2

τ2
Id

)−1

Φy, σ2x⊤
(
ΦΦ⊤ +

σ2

τ2
Id

)−1

x+ σ2

)
.

In the last lecture, we observed that for any λ > 0,(
ΦΦ⊤ + λId

)−1
Φ = Φ

(
Φ⊤Φ+ λIn

)−1
.

Therefore,

y | x,D ∼ N

(
x⊤Φ

(
Φ⊤Φ+

σ2

τ2
In

)−1

y, σ2x⊤Φ

(
Φ⊤Φ+

σ2

τ2
In

)−1

x+ σ2

)
.

One may select a solution x, based on this posterior predictive distribution. We will discuss this
further after explaining the kernel extension of Bayesian linear regression.

Note that the mean value of y | x,D is equivalent to the prediction from the ridge regression
formulation with λ = σ2/τ2. Note that Bayesian linear regression considers noise in function
evaluation, which results in the variance term. As a result, Bayesian linear regression takes into
account uncertainty in prediction as well.

4 Gaussian Process

Before we extend the framework of Bayesian linear regression to general non-linear functions, let
us discuss what is known as Gaussian processes defined based on multivariate Gaussian distri-
butions. We say that a function f is sampled from a Gaussian process if for any finite collection
of solutions x1, . . . , xn ∈ C, their function values f(x1), . . . , f(xn) follow a multivariate Gaussian
distribution. To be more specific, we assume that there exist a mean function µ(x) and a covariance
function k(x, x′) such that

µ(x) = E [f(x)] ,

k(x, x′) = E
[
(f(x)− µ(x))(f(x′)− µ(x′))

]
.

Then f sampled from the Gaussian process with mean function µ and covariance function k satisfies
the following. For any x1, . . . , xn ∈ C,f(x1)

...
f(xn)

 ∼ N

µ(x1)

...
µ(xn)

 ,

k(x1, x1) · · · k(xn, x1)
...

. . .
...

k(x1, xn) · · · k(xn, xn)

 .

To simplify, we often use notation

f(x) ∼ GP
(
µ(x), k(x, x′)

)
.

Moreover, the covariance function k is also referred to as a kernel function, as in kernel ridge
regression. Recall that for kernel ridge regression, we want the kernel function k to induce the
associated matrix

K =

k(x1, x1) · · · k(xn, x1)
...

. . .
...

k(x1, xn) · · · k(xn, xn)

3

symmetric and positive semidefinite. To define a proper Gaussian process, we also require this
condition. As before, the linear kernel, the polynomial kernel, the squared exponential kernel, and
the Matérn kernel satisfy the condition.

5 Gaussian Process Regression

Next we present the framework of Gaussian process regression, which generalizes Bayesian
linear regression. As before, we have a set D = {(x1, y1), . . . , (xn, yn)} of n i.i.d. data points
sampled from some unknown distribution. We assume that the data points are given by a function
f sampled from a Gaussian process. To be specific, we have

yi = f(xi) + ϵi, i ∈ [n]

where ϵ1, . . . , ϵn are i.i.d. noise variables sampled from a Gaussian distribution N (0, σ2) for some
σ > 0. As f is a sample from a Gaussian process, there exists some mean function µ and kernel
function k such that f(x) ∼ GP (µ(x), k(x, x′)). In practice, we often assume that µ(x) = 0. Hence,

f(x) ∼ GP
(
0, k(x, x′)

)
.

Based on our development of Gaussian processes from the previous section, let us explain how to
predict the function value f(x) of a given solution. By definition, f(x1), . . . , f(xn), and f(x) follow

f(x1)
...

f(xn)
f(x)

 ∼ N

0
...
0
0

 ,

k(x1, x1) · · · k(xn, x1) k(x, x1)

...
. . .

...
...

k(x1, xn) · · · k(xn, xn) k(x, xn)
k(x1, x) · · · k(xn, x) k(x, x)

 .

For the kernel function k, we define k(x) and K as follows.

k(x) =

k(x1, x)
...

k(xn, x)

 ∈ Rn, K =

k(x1, x1) · · · k(xn, x1)
...

. . .
...

k(x1, xn) · · · k(xn, xn)

 ∈ Rn×n.

Then
f(x1)

...
f(xn)
f(x)

 ∼ N
(
0,

[
K k(x)

k(x)⊤ k(x, x)

])
.

Since yi = f(xi) + ϵi and ϵi ∼ N (0, σ2), it follows that
y1
...
yn
f(x)

 ∼ N
(
0,

[
K + σ2In k(x)
k(x)⊤ k(x, x)

])
.

Then the posterior distribution of f is given by

f(x) | D ∼ N
(
k(x)⊤

(
K + σ2In

)−1
y, k(x, x)− k(x)⊤

(
K + σ2In

)−1
k(x)

)
where y = (y1, . . . , yn)

⊤. Again, the mean function of the posterior distribution is the same as the
prediction from the kernel ridge regression formulation with λ = σ2.

4

6 Gaussian Process Optimization

In this section, we consider black-box optimization where the goal is to “maximize” an unknown
objective function:

max
x∈C

f(x).

Note that a maximization problem can be equivalently expressed as a minimization problem by
taking −f . In contrast to our previous frameworks for black-box optimization, we adopt the regret
minimization framework described as follows. Suppose that we make a sequence x1, . . . , xT of
solutions in C over T steps. Then we define the notion of regret as

Regret(T) = T ·max
x∈C

f(x)−
T∑
t=1

f(xt).

A Bayesian approach for this framework would assume a Gaussian process prior and proceed by
updating the posterior. In particular, we will discuss the seminal work by Srinivas et al. [SKKS10].

Given x1, . . . , xt and their associated noisy evaluations y1, . . . , yt, we define empirical mean function
µt(x) and empirical covariance function σt(x) based on Gaussian process regression as follows. For
a given kernel function k, let kt(x) and Kt be defined as

kt(x) =

k(x1, x)
...

k(xt, x)

 ∈ Rt, Kt =

k(x1, x1) · · · k(xt, x1)
...

. . .
...

k(x1, xt) · · · k(xt, xt)

 ∈ Rt×t.

Then we define µt and σt so that they satisfy

µt(x) = kt(x)
⊤(Kt + σ2It)

−1y,

σt(x)
2 = k(x, x)− kt(x)

⊤(Kt + σ2It)
−1kt(x).

For t = 0, we have µ0(x) = 0 and σ0(x)
2 = k(x, x). Then the celebrated GP-UCB algorithm

works as follows. Here, the parameter β1, . . . , βT are chosen so that for all t ∈ [T], we satisfy the

Algorithm 1 The GP-UCB algorithm

Input: parameters β1, . . . , βT .
for t = 1, . . . , T do

Choose
xt = argmaxx∈Cµt−1(x) +

√
βtσt−1(x)

Obtain a noisy evaluation of xt given by

yt = f(xt) + ϵt, ϵt ∼ N (0, σ).

end for

following with high probability.

• When C is finite,
|f(x)− µt−1(x)| ≤

√
βtσt−1(x)

holds for every x ∈ C.

5

• When C is compact,
|f(xt)− µt−1(xt)| ≤

√
βtσt−1(xt).

This is why the algorithm is called GP-UCB where GP stands for Gaussian process and UCB
stands for upper confidence bounds. Basically, by satisfying the condition, µt−1(x) +

√
βtσt−1(x)

is an upper bound on f(x) with high probability. The GP-UCB algorithm chooses a solution that
maximizing the upper bound function at each step. This is similar in spirit to the UCB algorithm
for multi-armed bandits.

References

[SKKS10] Niranjan Srinivas, Andreas Krause, Sham Kakade, and Matthias Seeger. Gaussian pro-
cess optimization in the bandit setting: no regret and experimental design. In Proceedings
of the 27th International Conference on International Conference on Machine Learning,
ICML’10, page 1015–1022, Madison, WI, USA, 2010. Omnipress. 6

6

	Outline
	Motivation for Bayesian Optimization
	Bayesian Linear Regression
	Gaussian Process
	Gaussian Process Regression
	Gaussian Process Optimization

