
DS 801: Advanced Optimization for Data Science KAIST, Spring 2024
Lecture #23: Black-Box Optimization June 3, 2024
Lecturer: Dabeen Lee

1 Outline

In this lecture, we cover

• black-box optimization by supervised learning,

• kernel ridge regression,

• optimizing over a trained neural network.

2 Black-Box Optimization by Supervised Learning

In the last lecture, we introduced the black-box optimization framework which applies to settings
where the objective function is not known to the decision-maker. We consider

min
x∈C

f(x)

where the decision-maker has access to none of the gradient ∇f(x) and the Hessian ∇2f(x). We
find a solution based on bandit feedback which exhibits the value f(x) of a chosen solution x.
We learned optimistic optimization methods, which explore the solution space based on continuity
of the objective function. The main idea behind the optimistic optimization methods is that we
provide a hierarchical partitioning of the search space based on which we can optimistically explore
subsets of the search space.

The optimistic optimization algorithms are widely used in practice because they rely on minimal
structural assumptions on the objective function. On the other hand, as they do not exploit
any underlying structures of the objective function, they often fall into inferior performance than
instance-specific methods that are implemented with some knowledge of the problem environment.
This motivates the question of how to explore and exploit the underlying structure of the function.

In this lecture, we discuss some supervised learning methods to learn and approximate the unknown
objective function. More importantly, based on the learned model and function, we are interested
in finding a good solution that guarantees a small loss value. Basically, we are given n data points
(x1, f(x1)), . . . , (xn, f(xn)), from which we infer the underlying function f .

2.1 Kernel Ridge Regression

Although we consider general non-convex functions for black-box optimization, let us start with
the simple linear case to explain the basic idea.

Recall that linear regression seeks to find a linear model between the vector x ∈ Rd of features and
the response variable y ∈ R given by

y = θ⊤truex

where θtrue ∈ Rd is the coefficient vector. Then we want to infer the true coefficient vector θtrue,
based on a given set of n data points (x1, y1), . . . , (xn, yn). For our setting, we have yi = f(xi)

1



for i ∈ [n]. For the linear case, learning the coefficient vector θtrue is basically learning function
f(x) = θ⊤truex.

We learned the ridge regression framework that takes ℓ2 regularization. The formulation is given
by

min
θ

n∑
i=1

(
yi − θ⊤xi

)2
+ λ∥θ∥22. (23.1)

Note that

n∑
i=1

(
yi − θ⊤xi

)2
+ λ∥θ∥22 = θ⊤

(
n∑

i=1

xix
⊤
i + λI

)
θ − 2

(
n∑

i=1

yixi

)⊤

θ +
n∑

i=1

y2i .

Then the optimal solution to (23.1) is given by

θ̂ =

(
n∑

i=1

xix
⊤
i + λId

)−1 n∑
i=1

yixi

where Id is the d× d identity matrix. As a result, we may find a solution by solving the following
approximate problem:

min
x∈C

f̂(x) = min
x∈C

θ̂⊤x.

To summarize, we went through the following steps.

1. Deduce a function f̂(x) by ridge regression based on data (x1, y1), . . . , (xn, yn).

2. Compute a solution that optimizes f̂(x).

Of course, this framework based on linear regression is limited as the objective function can be
non-convex in general. Then our next question is about how to extend the procedure to the case
of non-convex objective functions. To answer this, we explain kernel ridge regression.

To elaborate, we define Φ and y as

Φ = (x1, . . . , xn) ∈ Rd×n, y = (y1, . . . , yn)
⊤ ∈ Rn.

Then we have
n∑

i=1

xix
⊤
i = ΦΦ⊤,

n∑
i=1

yixi = Φy.

As a result,

θ̂ =
(
ΦΦ⊤ + λId

)−1
Φy.

Note that both ΦΦ⊤ + λId and Φ⊤Φ+ λIn are invertible. Then(
ΦΦ⊤ + λId

)−1
Φ = Φ

(
Φ⊤Φ+ λIn

)−1

holds if and only if(
ΦΦ⊤ + λId

)(
ΦΦ⊤ + λId

)−1
Φ
(
Φ⊤Φ+ λIn

)
=
(
ΦΦ⊤ + λId

)
Φ
(
Φ⊤Φ+ λIn

)−1 (
Φ⊤Φ+ λIn

)
2



which is equivalent to ΦΦ⊤Φ+λΦ = ΦΦ⊤Φ+λΦ. Therefore, we have (ΦΦ⊤+λId)
−1Φ = Φ(Φ⊤Φ+

λIn)
−1, and thus,

θ̂ = Φ
(
Φ⊤Φ+ λIn

)−1
y, θ̂⊤x = x⊤Φ

(
Φ⊤Φ+ λIn

)−1
y.

Here, let us expand the terms x⊤Φ and Φ⊤Φ to express θ̂⊤x. Note that

x⊤Φ =
(
x⊤x1, . . . , x

⊤xn

)
∈ R1×n, Φ⊤Φ =

x⊤1 x1 · · · x⊤1 xn
...

. . .
...

x⊤n x1 · · · x⊤n xn

 ∈ Rn×n.

Note that the components of x⊤Φ are of the form x⊤xi while the entries of Φ
⊤Φ are given by x⊤i xj .

Here, given two vectors x and x′, one may introduce and consider the following kernel function:

k(x, x′) = x⊤x′.

This is often called the linear kernel. By considering other types of kernel functions, one may
extend linear models to non-linear models, and this is the basic idea of kernel ridge regression. For
example,

• the polynomial kernel:
k(x, x′) = (x⊤x′)ℓ,

• the squared exponential kernel:

k(x, x′) = exp

(
−∥x− x′∥22

2σ2

)
,

• the Matérn kernel:

k(x, x′) =
σ2

Γ(ν)2ν−1

(
∥x− x′∥2

λ

)ν

Bν

(
∥x− x′∥2

λ

)
where γ denotes the Gamma function, Bν denotes the modified Bessel function of the second
kind, ν is a parameter controlling the smoothness of the function.

Given a function k : Rd × Rd → R, let us define k(x) and K as follows.

k(x) =

k(x1, x)
...

k(xn, x)

 ∈ Rn, K =

k(x1, x1) · · · k(xn, x1)
...

. . .
...

k(x1, xn) · · · k(xn, xn)

 ∈ Rn×n.

For the linear kernel, we have that k(x) = Φ⊤x and K = Φ⊤Φ. For a function k : Rd × Rd → R
to be kernel function, the matrix K needs to be symmetric and positive semidefinite. Then, with
a kernel function k equipped with function k(x) and matrix K, we take

f̂(x) = k(x)⊤(K + λIn)
−1y.

Here, this function f̂(x) indeed depends on x. This means that by considering

min
x∈C

k(x)⊤(K + λIn)
−1y,

3



we can find a solution x that achieves a loss value of f(x).

Let us discuss some computational aspects of kernel ridge regression. First of all, for a given set
of n data points, the matrix K + λIn is an n × n matrix. Using a standard matrix inversion
algorithm, it often takes O(n3) time to compute (K+λIn)

−1. Moreover, the approximate objective
k(x)⊤(K+λIn)

−1y is non-linear and can be non-convex depending our choice of the kernel function
k. As a consequence, finding a solution that minimizes the approximate objective can be difficult.
In practice, we often discretize the solution space C and choose the best solution among the points
in C.

2.2 Optimizing over a Trained Neural Network

One of the most practical supervised learning is to use a neural network to learn the underlying
model. Based on a data set of n points (x1, y1), . . . , (xn, yn) with yi = f(xi) for i ∈ [n], one may
train a neural network by considering

min
θ

n∑
i=1

ℓ(fθ(xi), yi).

Here, the trained neural network fθ provides an approximation of the objective function f . Then,
we may find a solution that achieves a small f value by considering

min
x∈C

fθ(x).

Feed-forward neural networks with ReLU activations functions are commonly used for approximat-
ing the unknown objective function in practice [PTA+22]. Throughout this section, we discuss how
to find an input solution that optimizes the output value of a trained feed-forward neural network
with ReLU activation. In particular, we explain the basic formulation due to Fischetti and Jo
[FJ18] and Serra et al. [STR18].

Let us discuss the case of a neural network with a single hidden layer. Let x ∈ Rd be the input,
prepared by d input neurons. There are m neurons in the single hidden layer. Let the input of the
ith neuron in the hidden layer be given by w⊤

i x+ bi. Then the output of the neuron is

ReLU(w⊤
i x+ bi).

Let ai denote the weight between the ith neuron in the hidden layer and the output node. Then
the output of the neural network is given by

fθ(x) =

n∑
i=1

ai · ReLU(w⊤
i x+ bi).

Then the problem boils down to solving

min
x∈C

n∑
i=1

aiti

s.t. ti = ReLU(w⊤
i x+ bi), i ∈ [n].

(23.2)

Recall that

ReLU(x) =

{
x, if x > 0,

0, otherwise.

4



Let ℓi and ui denote the lower and upper bounds of w⊤
i x+ bi over C given by

ℓi = inf
x∈C

{
w⊤
i x+ bi

}
, ui = sup

x∈C

{
w⊤
i x+ bi

}
.

Then, we can argue that ti = ReLU(w⊤
i x+ bi) holds if and only if ti satisfies

ti ≥ 0,

ti ≥ w⊤
i x+ bi,

ti ≤ u⊤i zi,

ti ≤ w⊤
i x+ bi − ℓi(1− zi),

for some zi ∈ {0, 1}. Therefore, (23.2) can be formulated as

min
x∈C

n∑
i=1

aiti

s.t. ti ≥ 0, i ∈ [n]

ti ≥ w⊤
i x+ bi, i ∈ [n]

ti ≤ u⊤i zi, i ∈ [n]

ti ≤ w⊤
i x+ bi − ℓi(1− zi), i ∈ [n]

zi ∈ {0, 1}, i ∈ [n].

(23.3)

The formulation simply extends to the case of multiple hidden layers.

More recently, Anderson et al. [AHM+20] and Tsay et al. [TKTM21] developed computationally
improved formulations for optimizing a trained feed-forward neural network with ReLU activation.

References

[AHM+20] Ross Anderson, Joey Huchette, Will Ma, Christian Tjandraatmadja, and Juan Pablo
Vielma. Strong mixed-integer programming formulations for trained neural networks.
Mathematical Programming, 183:3–39, 2020. 2.2

[FJ18] Matteo Fischetti and Jason Jo. Deep neural networks and mixed integer linear opti-
mization. Constraints, 23:296–309, 2018. 2.2

[PTA+22] Theodore P Papalexopoulos, Christian Tjandraatmadja, Ross Anderson, Juan Pablo
Vielma, and David Belanger. Constrained discrete black-box optimization using mixed-
integer programming. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepes-
vari, Gang Niu, and Sivan Sabato, editors, Proceedings of the 39th International Con-
ference on Machine Learning, volume 162 of Proceedings of Machine Learning Research,
pages 17295–17322. PMLR, 17–23 Jul 2022. 2.2

[STR18] Thiago Serra, Christian Tjandraatmadja, and Srikumar Ramalingam. Bounding and
counting linear regions of deep neural networks. In Jennifer Dy and Andreas Krause,
editors, Proceedings of the 35th International Conference on Machine Learning, vol-
ume 80 of Proceedings of Machine Learning Research, pages 4558–4566. PMLR, 10–15
Jul 2018. 2.2

5



[TKTM21] Calvin Tsay, Jan Kronqvist, Alexander Thebelt, and Ruth Misener. Partition-based
formulations for mixed-integer optimization of trained relu neural networks. In M. Ran-
zato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors, Ad-
vances in Neural Information Processing Systems, volume 34, pages 3068–3080. Curran
Associates, Inc., 2021. 2.2

6


	Outline
	Black-Box Optimization by Supervised Learning
	Kernel Ridge Regression
	Optimizing over a Trained Neural Network


