
DS 801: Advanced Optimization for Data Science KAIST, Fall 2024
Lecture #22: Black-Box Optimization May 29, 2024
Lecturer: Dabeen Lee

1 Outline

In this lecture, we cover

• introduction to black-box optimization,

• the discretization-based search method,

• simultaneous optimistic optimization.

2 (Non-Convex) Black-Box Optimization

In the last lecture, we learned bandit convex optimization where the decision-maker chooses a
sequence of solutions based on bandit feedback. Here, bandit feedback refers to the value of a
given loss function at a chosen decision. Bandit feedback is restrictive, as the decision-maker has
no access to loss functions, and as a consequence, the decision-maker cannot compute the gradient.
Nevertheless, one may deduce an estimator of the gradient, thereby being able to implement an
online gradient-based algorithm. We covered two algorithms that guarantee sublinear regret upper
bounds for bandit convex optimization.

Many problems in practice, however, involve non-convex loss functions. Loss functions that arise in
real-world applications can be as complex as the example in Figure 22.1. In fact, we learned various

Figure 22.1: Rastrigin Function in 2D

algorithms for non-convex optimization, including gradient descent with Hessian steps, the cubic
regularization method, and perturbed gradient descent. Recall that these algorithms are designed
to find second-order stationary points or local minima under appropriate assumptions on the loss
function.

Although the aforementioned algorithms for non-convex optimization are commonly used in prac-
tice, they require knowledge of the loss function’s gradient and possibly Hessian. As discussed in
the last lecture, there indeed exist many applications where it is difficult to analyze the gradient
and Hessian of the underlying loss function. The following provides a list of such applications.

1

• Engineering Design: Optimizing the design of complex systems and structures (e.g., aero-
dynamics of aircraft, structural design of bridges) where simulations are used to evaluate
performance.

• Machine Learning and Hyperparameter Tuning: Tuning hyperparameters of machine learning
models, such as neural networks, support vector machines, and random forests, to achieve
better performance on training and validation data.

• Robotics: Optimizing control parameters and policies for robotic systems where the dynamics
are complex and non-linear.

• Gaming and AI: Developing and tuning artificial intelligence for games, including the opti-
mization of strategies and behaviors in complex environments.

• Finance and Trading: Developing and optimizing trading algorithms and strategies, as well
as portfolio optimization, where the financial models are often noisy and non-differentiable.

• Energy Systems: Optimizing the operation and design of energy systems, such as power grids,
renewable energy installations, and energy storage systems, to improve efficiency and stability.

• Material Science: Discovering new materials with desirable properties (e.g., strength, con-
ductivity) by optimizing the composition and processing parameters.

• Healthcare and Medicine: Personalizing treatment plans and drug formulations by optimizing
the dosage and combination of therapies for individual patients.

• Chemistry and Biochemistry: Optimizing chemical reactions and biological processes for
higher yield, efficiency, and reduced side products in chemical engineering and biotechnology.

In these application settings, the associated loss function is ofen complex, non-differentiable, noisy,
or not explicitly known. As a result, we cannot hope for computing the gradient nor the Hessian
of the underlying loss function. Thereore, we need to consider non-convex optimization with
bandit feedback. This problem is often referred to as black-box optimization.

3 Discretization-Based Search

Let us consider
min
x∈C

f(x)

where C is the domain and f is the loss function. For black-box optimization, we make minimal
assumptions on the loss function f . That said, we consider the general setting where the loss
function can be non-convex and non-differentiable. On the other hand, in some applications, the
underlying loss function is continuous. The example in Figure 22.1 is indeed continuous, even
though its structure is highly complex. Motivated by this, we consider the setting where the loss
function is Lipschitz continuous. Throughout this section, we assume that f is L-Lipschitz
continuous in a norm ∥ · ∥, i.e.,

|f(x)− f(y)| ≤ L∥x− y∥.

The goal is to find a near-optimal solution xϵ for a given ϵ > 0 such that

f(xϵ) ≤ min
x∈C

f(x) + ϵ.

2

As the loss function f is Lipschitz continuous, our approach is to find a point that is close to an
optimal solution. Then, how do we find such a point? The most näıve way is to discretize the
solution space and search over the discrete set of points. To be more precise, we consider the
following two steps.

1. First, discretize the domain C to obtain a finite subset Cϵ ⊆ C containing an ϵ-optimal
solution.

2. Next, enumerate all points in Cϵ.

Hence, as long as the discretization Cϵ contains an ϵ-optimal solution xϵ, the search procedure will
find one. The iteration complexity of this algorithm is the number of points in Cϵ. Therefore, the
part of constructing a discretization Cϵ is crucial.

To simplify our presentation, we assume that

• the domain is given by C = [0, 1]d,

• we use the ℓ∞-norm, i.e., ∥ · ∥ = ∥ · ∥∞, and

• 1/Lϵ is an integer.

Based on these assumptions, we partition the domain C = [0, 1]d into (1/Lϵ)d boxes by decomposing
each coordinate interval [0, 1] into

[0, ϵ/L], [ϵ/L, 2ϵ/L], . . . , [1− ϵ/L, 1].

Then a box has the form[
(i1 − 1)ϵ

L
,
i1ϵ

L

]
×
[
(i2 − 1)ϵ

L
,
i2ϵ

L

]
× · · · ×

[
(id − 1)ϵ

L
,
idϵ

L

]
=

{
x ∈ Rd :

(ij − 1)ϵ

L
≤ xj ≤

ijϵ

L
∀j ∈ [d]

}
.

For a given box, we take the center point given by((
i1 − 1

2

)
ϵ

L
,

(
i2 − 1

2

)
ϵ

L
, . . . ,

(
id − 1

2

)
ϵ

L

)
.

Note that there are (1/Lϵ)d center points from the (1/Lϵ)d boxes. Basically, the set of center points
gives rise to a desired discretization Cϵ. The algorithm is to enumerate all center points and return
the one achieving the minimum loss value.

How do we establish the correctness of this approach? Note that any two points x, y in a piece
satisfies

∥x− y∥∞ ≤ ϵ/L,

which implies that
|f(x)− f(y)| ≤ L∥x− y∥∞ ≤ ϵ.

Let c∗ be the center point of the box containing an optimal solution. Then it follows that

f(c∗) ≤ min
x∈C

f(x) + ϵ.

Let c̄ be the center point returned by the algorithm. By the choice of c̄, we have that

f(c̄) ≤ f(c∗) ≤ min
x∈C

f(x) + ϵ,

as required.

3

4 Optimistic Optimization

The algorithm from the previous section is based on a fixed discretization. As a result, the algorithm
always takes (1/Lϵ)d steps to finish search over all points in the discretization. Another issue is
that we require knowledge of the Lipschitz constant L. Furthermore, the most critical issue with
the method is that we need the assumption that the loss function is Lipschitz continuous over the
entire domain.

In this section, we cover a framework of Munos [Mun11], referred to as simultaneous optimistic
optimization (SOO). The SOO framework works under the following weaker assumption than
the global Lipschitz continuity assumption.

Assumption 22.1. There exists some L > 0 such that for any x ∈ C,

f(x)− f(x∗) ≤ L∥x− x∗∥

where x∗ is an optimal solution to minx∈C f(x).

Hence, we assume Lipschitz continuity around an optimal solution, which is essentially a local
Lipschitz continuity assumption.

Another favorable aspect of SOO is that it does not need to know the Lipschitz constant L. How
is this possible? Recall that the previous approach needs to know L because it prepares a fixed
discretization based on the parameter L. In contrast, instead of one fixed discretization, the SOO
framework starts with a rough partition of the domain, and it gradually refines it.

To be more specific, SOO works with the idea of hierarchical partitioning. First, the domain
C is partitioned into K subsets. Here, one may represent the K subsets as K children of paraent
C. Then, we may choose one of the K subsets and partition it into K subsets, as in Figure 22.2.

Figure 22.2: Partitioning of the domain

We may continue partitioning pieces. From the second partition of Figure 22.2, we can choose one
of the two large subsets or one of the three smaller subsets. Figure 22.3 shows a sequence of more
refined partitions of the domain C.

4

Figure 22.3: Refined partitions

The hierarchical partitioning structure naturally gives rise to a tree representation as in Figure 22.4.

Figure 22.4: Tree representation of a partition

Note that hierarchical partitioning can be done without knowledge of the Lipschitz constant L.
The main idea behind the SOO framework is to choose subsets that are expected to contain an
optimal solution and refine them gradually. As the algorithm from the previous section, SOO takes
a center point of each subset. Then the quality of the subset is measured by the loss value of its
center point.

Another important component of SOO is the idea of optimistic search. At each iteration, we
need to choose which subset to be partitioned. The choice is made based on two criteria. On
one hand, it makes sense to focus on subsets whose center points have low loss values. On the
other hand, a large subset is not explored enough yet, so its unexplored region may contain a good
solution. This is similar in spirit to the exploration-exploitation tradeoff.

To be more specific, we use notation (h, j) to denote the jth subset at depth h. Here, (0, 0) refers
to the original domain C. Then we denote by xh,j the center point of (h, j). Then the quality of
subset (h, j) is measured by f(xh,j). Then, the next question is about how to choose a subset that
is unexplored? We may select a subset at a high hierarchy in the tree representation. The SOO
algorithm is given as follows.

References

[Mun11] Rémi Munos. Optimistic optimization of a deterministic function without the knowledge
of its smoothness. In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K.Q. Wein-

5

Algorithm 1 Simultaneous Optimistic Optimization

Input: the maximum depth function hmax : Z → Z.
Initialize T1 = {(0, 0)} and t = 1.
while True do

Set vmin = ∞.
for h = 0 to min{depth(Tt), hmax(t)} do

Among all leaves (h, j) ∈ Lt of depth h, select

(h, i) ∈ argmin(h,j)∈Lt
f(xh,j)

if f(xh,i) ≤ vmin then
Partition the subset (h, i) into K subsets (h+ 1, i1), . . . , (h+ 1, iK).
Add them to Tt.
Evaluate f(xh+1,i1), . . . , f(xh+1,iK).
Set vmin = f(xh,i).
if t = T then

Return
argmax(h,i)∈TT f(xh,i)

end if
end if

end for
end while

berger, editors, Advances in Neural Information Processing Systems, volume 24. Curran
Associates, Inc., 2011. 4

6

	Outline
	(Non-Convex) Black-Box Optimization
	Discretization-Based Search
	Optimistic Optimization

