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1 Outline

In this lecture, we cover

• introduction to bandit convex optimization,

• the algorithm by Flaxman, Kalai, and McMahan,

• an algorithm by two-point feedback.

2 Bandit Convex Optimization

In the last lecture, we learned online convex optimization (OCO) and its applications in sequential
decision making. Platforms like streaming services, e-commerce websites, or news aggregators use
OCO to recommend items (movies, products, articles) to users. In medical studies, one may apply
OCO to assign treatments to patients with the goal of identifying the most effective ones. Moreover,
retailers and service providers adjust prices in real-time to maximize revenue or market share.

Recall that the OCO framework considers a sequence of loss functions f1, . . . , fT and aims to
sequantially generate solutions x1, . . . , xT so that the regret

T∑
t=1

ft(xt)−min
x∈C

T∑
t=1

ft(x)

can be minimized. We learned that online gradient descent (OGD) and online mirror descent
(OMD) guarantee a sublinear regret. Here, OMD as well as OGD proceeds with the update rule

xt+1 = argminx∈C

{
g>t x+

1

ηt
Dψ(x, xt)

}
where gt is the gradient ∇ft(xt) of ft at xt. Hence, solving the OCO framework with the algorithms
requires knowledge of the gradient.

In some real-world applications, however, it may not be feasible to assume full knowledge of the
gradient. For recommender systems, the system learns from user interactions (e.g., clicks, pur-
chases) to improve recommendations, but it only receives feedback on the items shown to the user.
For clinical trials, feedback is limited to the outcomes observed in the patients who received the
treatments. Furthermore, for dynamic pricing, the feedback comes from customer purchases at
specific price points, so a pricing strategy is found without full knowledge of the demand curve. In
these settings, the feedback is typically just the loss corresponding to the chosen action.

The bandit feedback means that for a chosen decision xt, the decision-maker receives its associated
loss ft(xt). The bandit feedback is a zeroth-order feedback, whereas the gradient information
is a first-order feedback. To construct the gradient ∇ft(xt) at xt, we require knowledge of the
loss function ft, which is not feasible in many applications such as recommender systems, medical
trials, and dynamic pricing. For these scenarios, the decision-maker is asked to generate a sequence
of decisions based on the bandit feedback.
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Bandit Convex Optimization (BCO) is basically an extension of OCO where the decision-
maker generates a sequence of decisions based on the history of bandit feedback. To be more
specific, the decision-maker prepares a decision xt+1 for the (t+ 1)th time slot based on the zeroth-
order information f1(x1), . . . , ft(xt) up to the first t time slots. Then the performance is measured
based on the regret as in the OCO framework. As BCO works with more limited information than
OCO, one would expect a worse regret for BCO. In this lecture, we will cover two algorithmic
frameworks; the first algorithm guarantees a regret of O(T 3/4), and the second one guarantees a
regret of O(

√
T ) while it requries more information than the first one.

3 Algorithm by Flaxman, Kalai, and McMahan

In this section, we discuss an algorithm by Flaxman et al. [FKM05] for bandit convex optimization.
Before we present the algorithm, let us provide some basic intuition behind it. The idea is basically
to construct an estimator of the gradient based on bandit feedback. To elaborate, we consider a
univariate function f : R→ R, and we want an estimator of the derivative f ′(x) at a point x ∈ R.
Then we take u from {−1, 1} uniformly at random and evaluate f(x + δu) for some δ > 0. We
claim that

1

δ
f(x+ δu)u

is an approximation of f ′(x). To see this,

E
[

1

δ
f(x+ δu)u

]
=
f(x+ δ)− f(x− δ)

2δ
,

which converges to f ′(x) as δ → 0. One may generalize this idea to the d-dimensional case as
follows.

Let B and S be the unit ball and the unit sphere in Rd defined as

B =
{
x ∈ Rd : ‖x‖2 ≤ 1

}
and S =

{
x ∈ Rd : ‖x‖2 = 1

}
.

For a function f : Rd → R and a point x ∈ Rd, the procedure to deduce an estimator of the gradient
∇f(x) is as follows.

1. Sample a vector u from S =
{
x ∈ Rd : ‖x‖2 = 1

}
uniformly at random.

2. Evaluate f(x+ δu).

3. Take vector g given by

g =
d

δ
f(x+ δu)u.

Then we consider
f̂ δ(x) = Ev∼B [f(x+ δv)]

where the expectation is taken over the random vector v sampled from the unit ball B uniformly
at random. We will see that f̂δ(x) is an approximation of f .

Lemma 21.1. If f is L-Lipschitz in the `2-norm,∣∣∣f(x)− f̂ δ(x)
∣∣∣ ≤ δL.

2



Proof. Note that∣∣∣f(x)− f̂ δ(x)
∣∣∣ = Ev∼B [|f(x)− f(x+ δv)|] ≤ Ev∼B [L‖δv‖2] ≤ Lδ,

as required.

In fact, we can argue that g is an unbiased estimator of ∇f̂ δ(x).

Lemma 21.2 ([FKM05]). For any δ > 0,

Eu∼S
[
d

δ
f(x+ δu)u

]
= ∇f̂ δ(x)

where the expectation is taken over the random vector u sampled from the unit sphere S uniformly
at random.

Hence, for any u sampled from S uniformly at random,

g =
d

δ
f(x+ δu)u

is an unbiased estimator of ∇f̂ δ(x). Given this, we are ready to explain the algorithm of Flaxman
et al. that guarantees a sublinear regret.

As before, we consider the sequential optimization setting where we receive a sequence of loss
functions f1, . . . , fT . To simplify our presentation, we assume the following.

Assumption 21.3. The domain C contains the origin, i.e., 0 ∈ C.

This assumption is without loss of generality because we may translate the coordinate space by a
point x1 in C.

Assumption 21.4. The diameter of the domain C is bounded above by R for so, i.e., supx,y∈C ‖x−
y‖2 ≤ R for some R ≥ 1.

This assumption holds if C is bounded. In particular, one may take R = max{1, supx,y∈C ‖x−y‖2}.
The last component is to define

(1− δ)C :=

{
x ∈ Rd :

1

1− δ
x ∈ C

}
.

Then the algorithm is as follows. As we play xt + δut, not xt, the regret of Algorithm 1 is given by

Algorithm 1 FKM Bandit Gradient Descent

Initialize x1 = 0.
for t = 1, . . . , T do

Sample ut from the unit sphere S =
{
x ∈ Rd : ‖x‖2 = 1

}
uniformly at random.

Evaluate ft(xt + δut).
Construct gt = (d/δ)ft(xt + δut)ut.
Obtain xt+1 = proj(1−δ)C {xt − ηgt} for a step size η > 0.

end for
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T∑
t=1

ft(xt + δut)−min
x∈C

T∑
t=1

ft(x).

Another difference compared to online gradient descent is that we project solutions to (1 − δ)C,
not to C.

Theorem 21.5. Let f1, . . . , fT : Rd → R be L-Lipschitz convex loss functions. Setting

η =
R

d
T−3/4 and δ = T−1/4,

the expected regret is bounded as

E [Regret] = E

[
T∑
t=1

ft(xt + δut)−min
x∈C

T∑
t=1

ft(x)

]
= O(LRdT 3/4)

where the expectation is taken over the random vectors u1, . . . , uT sampled from the unit sphere S
uniformly at random.

Proof. Let x ∈ C, and let xδ = proj(1−δ)C(x). Since (1 − δ)x ∈ (1 − δ)C, the choice of xδ states
that

‖xδ − x‖2 ≤ ‖(1− δ)x− x‖2 = δ‖x‖2 = δ‖x− 0‖2 ≤ δR

where the last inequality holds because the diameter of C is bounded above by R and 0, x ∈ C.
Since each ft is L-Lipschitz, it follows that

ft(xδ)− ft(x) ≤ L‖xδ − x‖2 ≤ δLR.

Moreover,
ft(xt + δut)− ft(xt) ≤ L‖δut‖2 = δL ≤ δLR

where the last inequality holds because R ≥ 1. This implies that

Regret =

T∑
t=1

ft(xt + δut)−
T∑
t=1

ft(x) ≤
T∑
t=1

ft(xt)−
T∑
t=1

ft(xδ) + 2δLRT.

Next, we bound the right-hand side. Note that for any x ∈ C,∣∣∣ft(x)− f̂ δt (x)
∣∣∣ = |Ev∼B [ft(x)− ft(x+ δv)]| ≤ Ev∼B [L‖δv‖2] ≤ δLR.

This implies that

Regret ≤
T∑
t=1

f̂ δt (xt)−
T∑
t=1

f̂ δt (xδ) + 4δLRT.

Note that

E

[
T∑
t=1

f̂ δt (xt)−
T∑
t=1

f̂ δt (xδ)

]
≤ E

[
T∑
t=1

∇f̂ δ>t (xt − xδ)

]

= E

[
T∑
t=1

g>t (xt − xδ)

]

≤ E

[
R2

2η
+
η

2

T∑
t=1

‖gt‖22

]
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where the first inequality holds due to the convexity of the loss functions, the equality holds
because gt is an unbiased estimator of ∇f̂ δt by Lemma 21.2, and the second inequality holds because
Algorithm 1 works in the same as online gradient descent over domain (1−δ)C with linear functions
g>t x for t ∈ [T ]. Note that

‖gt‖22 =
d2

δ2
(ft(xt + δut)− ft(0) + ft(0))2‖ut‖22 ≤

d2

δ2
(L((1− δ)R+ δ) + ft(0))2 =

d2

δ2
(LR+ ft(0))2.

Hence, we have that

E

[
R2

2η
+
η

2

T∑
t=1

‖gt‖22

]
≤ R2

2η
+
ηT

2δ2
d2 max

t∈[T ]
(LR+ ft(0))2.

Therefore,

E [Regret] ≤ 4δLRT +
R2

2η
+
ηT

2δ2
d2 max

t∈[T ]
(LR+ ft(0))2.

Setting

η =
R

d
T−3/4 and δ = T−1/4,

we deduce that
E [Regret] = O(dLRT 3/4),

as required.

4 Algorithm with Two-Point Feedback

In the previous section, we explained an algorithm that guarantees a regret upper bound of O(T 3/4).
Hence, there is still a gap from the lower bound of Ω(

√
T ). Recall that Algorithm 1 tests a single

point at each iteration. Indeed, this might be too restrictive. Instead of the single-point feedback
regime, [ADX10] proposed a relaxed setting where one can evaluate multiple points for an iteration
while the number of tests is still less than or equal to a fixed constant.

In this section, we explain a framework due to Shamir [Sha17]. The framework provides a gradient
estimation scheme based on two points. For a function f : Rd → R and a point x ∈ Rd, we consider
the following procedure.

1. Sample a vector u from the unit sphere S =
{
x ∈ Rd : ‖x‖2 = 1

}
uniformly at random.

2. Evaluate f(x+ δu) and f(x− δu).

3. Take vector g given by

g =
d

2δ
(f(x+ δu)− f(x− δu))u.

Here, we also define f̂ δ as before:

f̂ δ(x) = Ev∼B [f(x+ δv)] .

Lemma 21.6 ([Sha17]). For any δ > 0,

Eu∼S
[
d

2δ
(f(x+ δu)− f(x− δu))u

]
= ∇f̂ δ(x)

where the expectation is taken over the random vector u sampled from the unit sphere S uniformly
at random.
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Proof. Note that

d

2δ
(f(x+ δu)− f(x− δu))u =

d

2δ
f(x+ δu)u− d

2δ
f(x− δu)u.

Then, the assertion follows from Lemma 21.2.

Moreover, we have the following fact.

Lemma 21.7 ([Sha17]). Let

δ = R

√
2d

T
,

and let f be a L-Lipschitz continuous convex function. Then there exists some constant κ > 0 such
that for all x,

Eu∼S

[∥∥∥∥ d2δ (f(x+ δu)− f(x− δu))u

∥∥∥∥2
]
≤ κdL2.

Algorithm 2 Algorithm with two-point feedback

Initialize x1 = 0.
for t = 1, . . . , T do

Sample ut from the unit sphere S =
{
x ∈ Rd : ‖x‖2 = 1

}
uniformly at random.

Evaluate ft(xt + δut) and ft(xt − δut)
Construct gt = (d/2δ) (ft(xt + δut)− ft(xt − δut))ut.
Obtain xt+1 = projC {xt − ηgt} for a step size η > 0.

end for

Theorem 21.8 ([Sha17]). Let f1, . . . , fT : Rd → R be L-Lipschitz convex loss functions. Setting

η =
R

L
√
dT

and δ = R

√
2d

T
,

the expected regret is bounded as

E [Regret] = E

[
T∑
t=1

ft(xt + δut)−min
x∈C

T∑
t=1

ft(x)

]
= O(LR

√
dT )

where the expectation is taken over the random vectors u1, . . . , uT sampled from the unit sphere S
uniformly at random.
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