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1 Outline

In this lecture, we cover

• introduction to online learning,

• online convex optimization,

• online mirror descent.

2 Online Convex Optimization

Online convex optimization (OCO) is an online learning problem, that is to make a sequence
of predictions based on the history of past decisions and their results. The framework of OCO is
closely related to game theory, statistical learning theory, and stochastic modeling as well as convex
optimization. The contents of this section are based on the text of Hazan [Haz16].

Let us provide some applications of the OCO framework.

• (Online spam filtering) We receive emails repeatedly, for each of which we apply an existing
spam-filtering system. A spam-filtering system has a list of words and expressions, based on
which it can predict whether an email is spam or valid. When an email that is classified as
valid by the existing filter turns out to be spam, we have to update the filter so that we can
filter similar spam emails later.

• (Online advertisement selection) A web browser selects a collection of online advertisements
for its ad slots. The web browser posts a catalog of online ads and observes their popularity
from users by the click-through rates. Later, the browser can change its ad selection based
on its prediction about user demands.

2.1 Online Binary Classification

Let us consider a mathematical model to establish an email spam filtering system. Recall that we
used the support vector machine (SVM) for binary classification. Just to remind you what it was,
we find a pair of a coefficient vector w and a right-hand side value b to use the hyperplane w>x = b
to classify data points. Given a feature vector x, we assign it label sign(w>x− b) where sign(c) has
value 1 if c ≥ 0 and value −1 if c < 0. When a training set of multiple data is available, we can find
such a classifier (w, b) by solving a convex optimization problem whose objective is to minimize the
hinge loss.

However, in some scenarios, data points dynamically arrive so that we gradually accumulate the
data. In such cases, we may adjust our model over time, and the learning process continues. To
be more specific, let us consider the online binary classification problem described as follows. An
email is represented by its feature vector x ∈ Rd and label y ∈ {−1, 1}. The feature vector can
encode words and expressions written in it, while the label indicates whether the email is spam
or not. Let’s say that y = 1 indicates spam and y = −1 indicates valid. For each time slot t, we
repeat the following procedure.
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• The spam filtering system prepares a classifier (wt, bt) based on the past emails represented
by (x1, y1), . . . , (xt−1, yt−1) ∈ Rd × {−1, 1}.

• New email with feature vector xt arrives.

• The spam filter predicts that its label is sign(w>t xt − b), while the true label of the email is
yt.

• The spam filter incurs a loss of max{0, 1− yt(w>t xt − b)}.

After T emails, the cumulative loss is given by

T∑
t=1

max{0, 1− yt(w>t xt − b)}.

Compared to a best classifier, we incur

T∑
t=1

max{0, 1− yt(w>t xt − b)} − min
(w,b)∈Rd×R

T∑
t=1

max{0, 1− yt(w>xt − b)}

more loss. Denoting the loss function at each time t as

ft(w, b) = max{0, 1− yt(w>xt − b)},

the excess cumulative loss is rewritten as

T∑
t=1

ft(wt, bt)− min
(w,b)∈Rd×R

T∑
t=1

ft(w, b).

Therefore, the online binary classification problem is an instance of online convex optimization
where the best fixed decision corresponds to the best spam classifier.

2.2 Adversarial Multi-Armed Bandits

Suppose that we have d slot machines (or bandits). Then, at each t, the player chooses which slot
machine to play. Here, let it ∈ {1, . . . , d} be the machine that the player chooses at time t. Then
the reward of playing machine i ∈ {1, . . . , d} at time t is given by ri,t, which is revealed only after
a play. Then we may compare the player’s cumulative reward against the total reward of the best
slot machine as follows.

max
i∈{1,...,d}

T∑
t=1

rt,i −
T∑
t=1

rt,it .

3 Regret Minimization for Online Convex Optimization

Online advertisement selection, email spam filter, and multi-armed bandits involve sequential
decision-making that depends on interactions between decisions made by the decision-maker and
data provided by the environment. As mentioned earlier, this process is called online learning or
online optimization in the sense that the learning process and the optimization task proceed based
on the history of information accumulated so far. As opposed to online learning and online opti-
mization, offline learning and offline optimization assume that complete information is available.

The following gives the list of main components.
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1. (A sequence of convex loss functions) We are given convex loss functions f1, . . . , fT where T
is the length of time horizon. The functions are revealed one at a time sequentially.

2. (Sequential decisions) At each time step t, we get to choose a decision/prediction xt before
the function ft for the time step is revealed. In other words, the function ft is unknown to
the decision maker when making a decision.

3. (Bounded domain) The set of available decisions (the feasible set), denoted C, is bounded
and convex.

Then we compute the accumulated losses incurred over the T time steps.

T∑
t=1

ft(xt).

This is indeed an online learning problem because, to make a new decision xt+1, we may use the
history of the past decisions and their corresponding losses

x1, f1(x1), x2, f2(x2), . . . , xt, ft(xt)

although the loss function ft+1 for time step t+ 1 is not yet given.

3.1 Performance Metric: the Notion of Regret

Let A be an algoriothm for online convex optimization, and let xA1 , . . . , x
A
T denote the decisions

made by algorithm A. We have defined the cumulative loss, minimizing which is our goal basically.
At the same time, to measure how close algorithm A is to being optimal, we compare the cumulative
loss of algorithm A against the cumulative loss of the best fixed decision. To be more precise, we
consider the following notion of regret.

RegretT (A) =
T∑
t=1

ft(x
A
t )−min

x∈C

T∑
t=1

ft(x).

Here, setting the benchmark as a single best decision is motivated by email spam filter for which
we need to find the most effective spam filtering system and multi-armed bandits in which the goal
is to find the most profitable slot machine.

We focus on developing algorithms that minimize the regret. By taking a sequence of actions to
minimize the regret, we learn and get close to the action of the best decision maker.

Our goal is to design an algorithm A whose regret is sublinear in T , which means that RegretT (A) =
o(T ). What does this indicate? We look at the time averaged regret.

1

T

T∑
t=1

ft(x
A
t )−min

x∈C

1

T

T∑
t=1

ft(x) =
RegretT (A)

T
= o(1).

In particular, in the offine setting where f1 = · · · = fT = f , the statement is equivalent to

1

T

T∑
t=1

f(xAt )−min
x∈C

f(x) =
RegretT (A)

T
= o(1).

Hence, a sublinear regret means that the time averaged optimality gap goes to 0 as T increases.
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3.2 Online Gradient Descent

There is a simple algorithm for online convex optimization that minimizes regret. In fact, a modi-
fication of gradient descent works for the online setting, and it is called online gradient descent.

Algorithm 1 Online Gradient Descent (OGD)

Initialize x1 ∈ C.
for t = 1, . . . , T do

Observe ft(xt) and obtain gt ∈ ∂ft(xt).
Obtain xt+1 = projC {xt − ηtgt} for a step size ηt > 0.

end for

The only distinction compared to the subgradient method for the offline setting is that we obtain
a subgradient from the subdifferentials ∂ft(xt) of functions ft that are sequentially revealed. This
simple algorithm does achieve an aymptotically optimal regret.

Theorem 20.1. Let f1, . . . , fT be an arbitrary sequence of convex loss functions satisfying ‖gt‖2 ≤
L for any gt ∈ ∂ft(x) for every x ∈ Rd and t ≥ 1. Then online gradient descent given by Algorithm 1
with step sizes ηt = R/(L

√
t) where R2 = supx,y∈C ‖x− y‖22 satisfies

T∑
t=1

ft(xt)−min
x∈C

T∑
t=1

ft(x) ≤ 3

2
LR
√
T .

Proof. The analysis of online gradient descent is quite similar to that of gradient descent. Let
x∗ ∈ argminx∈C

∑T
t=1 ft(x). Note that

‖xt+1 − x∗‖22 ≤ ‖xt − ηtgt − x∗‖22
= ‖xt − x∗‖22 + η2t ‖gt‖22 − 2ηtg

>
t (xt − x∗)

≤ ‖xt − x∗‖22 + η2tL
2 − 2ηt(ft(xt)− ft(x∗))

where the first inequality is due to the contraction property of the projection operator and the
second inequality is due to the convexity of ft. Then it follows that

ft(xt)− ft(x∗) ≤
1

2ηt

(
‖xt − x∗‖22 − ‖xt+1 − x∗‖22

)
+
ηt
2
L2.

Adding up these inequalities for t = 1, . . . , T , we obtain

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗) ≤

T∑
t=1

1

2ηt

(
‖xt − x∗‖22 − ‖xt+1 − x∗‖22

)
+

T∑
t=1

ηt
2
L2

≤
T∑
t=1

‖xt − x∗‖22
(

1

2ηt
− 1

2ηt−1

)
+
L2

2

T∑
t=1

ηt

≤ R2

2

T∑
t=1

(
1

ηt
− 1

ηt−1

)
+
L2

2

T∑
t=1

ηt

=
R2

2
· 1

ηT
+
L2

2

T∑
t=1

R

L
√
t

≤ 3

2
RL
√
T
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where we set 1/η0 to be 0, the second inequality is because ‖xt+1−x∗‖22 ≥ 0, and the last inequality
is because

∑T
t=1 1/

√
t ≤ 2

√
T .

Therefore, for Lipschitz continuous functions, OGD achieves the regret of O(
√
T ). Can we do better

than this?

Theorem 20.2. Any algorithm for online convex optimization incurs Ω(LR
√
T ) regret in the worst

case. The same statement holds even when the loss functions are i.i.d. with a fixed stationary
distribution.

For strongly convex and Lipschitz continuous functions, we can achieve a logarithmic regret!

Theorem 20.3. Let f1, . . . , fT be an arbitrary sequence of convex loss functions satisfying ‖gt‖2 ≤
L for any gt ∈ ∂ft(x) for every x ∈ Rd and t ≥ 1. Moreover, f1, . . . , fT are α-strongly convex
with respect to the `2 norm. Then online gradient descent given by Algorithm 1 with step sizes
ηt = 1/(αt) satisfies

T∑
t=1

ft(xt)−min
x∈C

T∑
t=1

ft(x) ≤ L2

2α
(1 + log T ).

4 Online Mirror Descent

We learned the online gradient descent (OGD) algorithm that proceeds with the update rule

xt+1 = projC {xt − ηtgt}

where gt is a subgradient of ft at xt. Note that

‖x− xt + ηtgt‖22 = 2ηt

(
g>t x+

1

2ηt
‖x− xt‖22

)
− 2ηtg

>
t xt + η2t ‖gt‖22.

This implies that

xt+1 = projC {xt − ηtgt}
= argminx∈C‖x− xt + ηtgt‖22

= argminx∈C

{
g>t x+

1

2ηt
‖x− xt‖22

}
.

Recall that ft(xt) + g>t x is a first-order approximation of ft at xt. Moreover, the quadratic term
‖x − xt‖22/2ηt encourages to choose a solution nearby xt. Hence, the choice of xt+1 is given by a
tradeoff between minimizing the first-order approximation and choosing a solution nearby xt. Here,
the distance between x and xt is measured by the `2 norm. Then the regret upper bound is given
by

3

2
LR
√
T

where L is a global upper bound on the Lipschitz constants of the loss functions and R2 =
supx,y∈C ‖x− y‖22.
Let us consider the case where

• loss functions f1, . . . , fT are L-Lipschitz in the `1 norm,

5



• the domain C is given by

C =

{
x ∈ Rd+ : x1 + · · ·+ xd =

R

2

}
.

Note that

sup
x,y∈C

‖x− y‖21 = R2 and sup
x,y∈C

‖x− y‖22 =
1

2
R2.

As the loss functions are L-Lipschitz in the `1 norm, it follows that

‖∇ft(x)‖∞ ≤ L

for x ∈ C and t = 1, . . . , T . Here, we have

‖∇ft(x)‖2 ≤
√
d‖∇ft(x)‖∞ ≤ L

√
d

for x ∈ C and t = 1, . . . , T . In fact, it can be that the Lipschitz constant of ft in the `2 norm can
blow up by a factor of

√
d. Then, online gradient descent may incur a regret of order

O(LR
√
dT ).

Here, we have the additional factor of
√
d. Again, this is due to the observation that the upper

bound on the Lipschitz constants of loss functions has become L
√
d, not L. Perhaps, measuring

the Lipschitz constants of loss functions in the `2-norm is not the best idea.

Recall that the update rule of OGD is

xt+1 = argminx∈C

{
g>t x+

1

2ηt
‖x− xt‖22

}
.

Here, the distance between x and xt is captured by the `2 distance between them. Instead, we may
consider the notion of Bregman divergence. To define it, we take a strongly convex function ψ
with respect to a norm ‖ · ‖. Then the Bregman divergence of p and q with respect to ψ is given by

Dψ(p, q) = ψ(p)− ψ(q)−∇ψ(q)>(p− q).

Example 20.4. Note that

ψ(x) =
1

2
‖x‖22

is strongly convex in the `2 norm, and the corresponding Bregman divergence is given by

Dψ(p, q) =
1

2
‖p− q‖22.

Example 20.5. Consider

ψ(x) =

d∑
i=1

xi log xi,

which is strongly convex over
C = {x ∈ Rd+ : ‖x‖1 = 1}

in the `1 norm. Moreover, the corresponding Bregman divergence is given by

Dψ(p, q) =

d∑
i=1

pi log
pi
qi

= KL(p, q)

for p, q ∈ C. Pinsker’s inequality states that

KL(p, q) ≥ 1

2
‖p− q‖21.
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The Online Mirror Descent (OMD) algorithm runs with the update rule

xt+1 = argminx∈C

{
g>t x+

1

ηt
Dψ(x, xt)

}
.

Theorem 20.6. Let f1, . . . , fT be an arbitrary sequence of convex loss functions that are L-Lipschitz
in a norm ‖ · ‖. Assume that the Bregman divergence Dψ satisfies

Dψ(x, y) ≥ 1

2
‖x− y‖2

for any x, y ∈ C. Moreover, R2 = supx,y∈C Dψ(x, y). Then online mirror descent with step sizes

ηt = R/(L
√
t) guarantees that

T∑
t=1

ft(xt)−min
x∈C

T∑
t=1

ft(x) = O
(
LR
√
T
)
.
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