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1 Prologue

In today’s fast-paced world driven by data, the ability to extract valuable insights and make in-
formed decisions is more crucial than ever. Optimization, the process of finding the best solution
among a set of alternatives, lies at the heart of this endeavor. From predicting customer behavior
to optimizing supply chains, from designing machine learning models to solving complex decision-
making problems, optimization techniques play a pivotal role in harnessing the power of data for
practical applications.

In this course, we will embark on a journey to explore the fundamental principles, algorithms, and
applications of optimization in the context of data science. Through a blend of theory, practical
examples, and hands-on exercises, we will equip ourselves with the necessary tools and techniques
to tackle real-world optimization challenges in data-driven decision-making. There are no formal
prerequisites, but basic knowledge of mathematical optimization and convex analysis will be as-
sumed.

2 Introduction to optimization for data science

As the name of this course suggests, we will get to learn the role of mathematical optimization in
the domain of data science. Here, a newcomer to the field may ask what mathematical optimization
is. A mathematical optimization problem has the following canonical form.

min f(z)

st. ze X

where

x is referred to as the decision vector, the vector of decision variables, or simply the decision
variables,

f(z) is the objective function that we want to optimize,

X is the domain from which we may take values of the decision variables,

e min indicates that the goal of the optimization problem is to find and assigne values to the

T
decision variables x minimizing the associated objective function value.

When we have max instead of min, the goal is to maximize the objective function.
X xr

Defining mathematical optimization, the next question is how it relates to data science or machine
learning. To elaborate on this, let us consider a supervised learning problem. A learning agent has
access to a set of data (z1,41), .., (Tn, yn) where x; denotes the feature and y; is the corresponding
label. For example, in image classification, x; encodes the pixel values of the ith image file, and
y; indicates whether the image is a picture of a cat or a dog. Based on the data set, the learning
agent’s goal is to find a classifier or a regression function for the supervised learning task. Suppose
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that we have a hypothesis class H = {h1, ha, ...} where each h; maps features to labels. A typical
framework for modeling the supervised learning task is formulated as the following optimization
problem.

~ 1 &
h € argmin  — C(h(x;),y;
amin > ()

where /(y,y') is a loss function, e.g., £(y,7') = (y — y')?, that accounts for the performance of
classifier h on the data set. The optimization model provides an abstract and general framework
for supervised learning. There indeed exist a wide range of problems in data science and machine
learning that can be formulated as a mathematical optimization model.

3 Topics in optimization for data science

In this section, we give an overview of topics covered throughout the course in the context of data
science. We will learn a comprehensive list of modern optimization methods and their applications
in data science, machine learning, and other related areas. From the perspective of methodologies,
we structure the course with the following four fields in mathematical optimization.

e Convex optimization.
e Nonconvex optimization.
e Minimax optimization.

e Black-box optimization.

Each of these four domains now has a rich theory and provides modeling frameworks for data
science. What follows explains the basics of the four domains and relevant applications.

3.1 Convex optimization

Let us start by discussing linear regression. Linear regression is an example of supervised learning.
Basically, given the predictor variable vector & € R?, our hypothesis is that the response variable
y € R satisfies

Ely|z]=w*"z (1.1)

for some w* € R% Given a set of data (x1,%1),...,(%n,yn), the goal is to infer the vector of
coefficients w governing the relationship between the predictor variables and the response variable.
We may propose a candidate vector w, which incurs the following.

error = |y; — ’LUT:L‘Z'|, 1=1,...,n
squared error = (y; —w' ;)% i=1,...,n
n
_ T 2
mean squared error = — » (y; —w ' x;)
n
i=1

Here, the squared error comes from the squared loss function £(y,y’) = (y — %')?. Then the mean
squared error measures how well the candidate vector w represents the data set. To deduce a
coefficient vector that performs the best on the data set in terms of the mean squared error, we
may solve

min = — Z:(yZ —w'z)? (1.2)



In practice, the simple model (1.2) often results in several issuses such as overfitting and fails to
detect colinear variables. To remedy these issues, a common practice is to introduce a regularization
term in the objective. One popular way is to consider
min lzn:(y —w'z)? + M |w]| (1.3)
weRd  n ’ !
for some A > 0. Here, the regularization term A ||w||; induces sparsity, because the objective would
rule out a vector w with large ||w|;. In practice, a sparse vector often achieves better results.

We have just described two optimization models (1.2) and (1.3) for linear regression, solving which
returns a vector w to infer the true coefficient vector w*. Then how can we solve the optimization
models? In fact, the mean squared loss and the mean squared loss with the ¢; regularization term
are both convez functions of w. Therefore, (1.2) and (1.3) are both convex optimization problems.
Convex optimization is fairly well understood, and we now have a wide range of algorithms and
methods for convex optimization. For example, we may use FISTA, and more generally accelerated
proximal gradient, for (1.3).

3.2 Nonconvex optimization

Although the linear regression framework lays a stepping stone for analyzing the relationship be-
tween the predictor variables and the response variable, the linear model is often too restrictive
in practical applications. In modern data science, neural networks are commonly used to solve
a supervised learning task. For simplicity, let us focus on a neural network with a single hidden
layer (Figure 1.1). Basically, given the predictor variable vector € R?, our hypothesis is that the

Input Layer Hidden Layer Output Layer

Input 1/
—

Input2 /

N

\

TN o \ Output
, —

Input3 [ /S = g

\

\
Input4 / p 4
—

Figure 1.1: Single hidden layer neural network

response variable y € R satisfies
Ely | ] =w;o(W) ) (1.4)

where

e W, 2 is the output of the input layer,

e 0 is an activation function,



e wsy is the weight vector that the hidden layer applies.

As linear regression, we may consider the mean squared error, which gives rise to

RS T T 2
min = — i — wy o(W, az) . 1.5
min nz(y Jo(W ) (1.5)
Here, the objective function of (1.5) may not be convex depending on the structure of the activation
function o. ReLLU and the sigmoid function are common choices for o, and it is known that these
activation functions lead to nonconvex objective functions. Hence, (1.5) is an instance of nonconvex

optimization.

Nonconvex optimization is in general a difficult area, and it is still an active area of research with
relatively few results. In spite of this, several applications such as training neural networks and low-
rank matriz factorization are well-studied, and we have efficient algorithms for them even though
they induce nonconvex optimization problems.

3.3 Minimax optimization

The third topic we discuss is minimaz optimization which is relavant to many cutting-edge tech-
nologies in data science such as Sharness-Aware Minimization and Generative Adversarial Network
(GAN). Suppose that the response variable y € R given the predictor variable vector € R?
satisfies

Ely [ z] = h(w, z)

where h(w,-) is a function parameterized by w, e.g., h(w,z) = w'x for linear regression and
h((Wi,ws),z) = wy o(W, z) for the single hidden layer neural network. As before, one may
consider the mean squared loss
1 >
min - — Z (yi — h(w,z;))”. (1.6)
i=1

However, it is often observed that this optimization approach results in suboptimal performance at
test time.

Inspired by this challenge, one would be interested in finding a parameter vector w whose entire
neighborhoods have uniformly low training loss value. To achieve this goal, one may consider the
following robust optimization framework.
. 1 ¢ 2
min  max — Z (yi — h(w+e€,x))°. (1.7)

W ellzzp M
One would also add a regularization term as follows.

1 n
min  max  — Y (y; — h(w+€,2))* + Awlf3. (1.8)

w < n
lellz<p 1

The optimization framework (1.8) is referred to as Sharpness-Aware Minimization (SAM) intro-
duced by Google Research in 2020 [FKMN21]. SAM is known to help prevent the model from
overfitting to the training data and improves its generalization performance.

As another application of minimax optimization, we briefly mention Generative Adversarial Net-
works (GANs) [GPAM™14]. GANs are a powerful framework for training generative models through
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Figure 1.2: Simple description of Generative Adversarial Networks

an adversarial process. In GANs, two neural networks, the generator and the discriminator, en-
gage in a game-theoretic competition, akin to a minimax game. The generator aims to produce
realistic data samples that resemble those from a training dataset, while the discriminator aims
to differentiate between real and fake samples. This adversarial dynamic drives both networks
to improve continuously: the generator seeks to generate samples that are increasingly difficult
for the discriminator to distinguish as fake, while the discriminator strives to become better at
distinguishing real from fake samples. Through this adversarial process, GANs learn to generate
high-quality, realistic data samples, with the generator gradually mastering the distribution of the
real data. This minimax optimization framework underpinning GANs has revolutionized generative
modeling, enabling remarkable advancements in generating realistic synthetic data across various
domains.

3.4 Black-box optimization

Black-box optimization refers to a class of optimization problems where the objective function is
treated as a black box, meaning that it is not explicitly defined or known. In other words, the func-
tion’s analytical form or mathematical expression is unknown, and only its input-output behavior
can be observed or evaluated. In particular, the objective function may be highly nonconvex, and
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Figure 1.3: Simple description of Generative Adversarial Networks

we do not have access to the gradient information about the function.

In black-box optimization, the goal is to find the optimal input parameters that minimize or
maximize the objective function without relying on its internal structure. This makes black-box



optimization particularly useful in scenarios where the objective function is complex, expensive to
evaluate, or involves noisy measurements.

Black-box optimization finds applications in a wide range of fields, including engineering design,
machine learning, hyperparameter tuning, finance, and experimental design, where the underlying
processes are complex or poorly understood, and traditional optimization approaches may not be
suitable.

Various optimization techniques can be used for black-box optimization. Among them, we will
cover Bayesian optimization, optimistic optimization, genetic algorithms, and simulated annealing.
These methods iteratively explore the input space, evaluating the objective function at different
points and updating the search direction based on the observed results.

References

[FKMN21] Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware
minimization for efficiently improving generalization. In International Conference on
Learning Representations, 2021. 3.3

[GPAM™14] Tan Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In
Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K.Q. Weinberger, editors,
Advances in Neural Information Processing Systems, volume 27. Curran Associates,
Inc., 2014. 3.3



	Prologue
	Introduction to optimization for data science
	Topics in optimization for data science
	Convex optimization
	Nonconvex optimization
	Minimax optimization
	Black-box optimization


