
DS 801: Advanced Optimization for Data Science KAIST, Fall 2024
Lecture #19: Wasserstein GAN, Adversarial Training, and SAM May 13, 2024
Lecturer: Dabeen Lee

1 Outline

In this lecture, we cover

• Wasserstein Generative Adversarial Networks,

• adversarial training.

• sharpness-aware minimization.

2 Review of Generative Adversarial Network (GAN) and f-GAN

In the last lecture, we studied Generative Adversarial Networks (GANs) [GPAM+14]. Recall
that a GAN consists of the generator network G and the discriminator network D. First, the
generator G receives a random vector z ∈ Rk drawn from a fixed distribution γ such as the
standard Guassian distribution N(0, Ik). Then it produces a sample

x = G(z).

Note that the generator network corresponds to the distribution ν with the density function

q(x) = γ
(
G−1(x)

)
.

Hence, the generator network produces a sample from the distribution ν with density function
q without explicitly modeling q. Then, after the generator G produces a sample x = G(z), the
discriminator D classifies whether x comes from the training data set or were given by G. The way
the discriminator D works is that it takes a sample x and returns

D(x) ∈ [0, 1]

that measures the probability of x coming from the true data. Remember that we use the following
loss function to train a GAN.

V (G,D) = Ex∼µ [logD(x)] + Ez∼γ [log(1−D(G(z)))] .

For a fixed generator G, maximizing V (G,D) with respect to D requires making D(x) high for x
coming from the true data while making D(G(z)) small for z ∼ γ. Hence, by considering

max
D

V (G,D),

one can train the discriminator so that it can distinguish the generated samples from the true data.
In response to the discriminator, the generator solves

min
G

max
D

V (G,D).

As a result, the generator attempts to fool the discriminator by making it end up assigning a high
value to G(z).

1

We also derived the following equivalent representations of the loss function V (G,D).

V (G,D) = Ex∼µ [logD(x)] + Ez∼γ [log(1−D(G(z)))]

= Ex∼µ [logD(x)] + Ex∼ν [log(1−D(x))]

=

∫
Rd

logD(x)dµ(x) +

∫
Rd

log(1−D(x))dν(x)

=

∫
Rd

(p(x) logD(x) + q(x) log(1−D(x))) dx.

Defining the Kullback-Leibler(KL) divergence of two distributions p and q as

DKL(p||q) =

∫
Rd
p(x) log

(
p(x)

q(x)

)
dx

and the Jensen-Shannon divergence of p and q as

DJS(p||q) =
1

2
DKL

(
p

∣∣∣∣∣∣∣∣p+ q

2

)
+

1

2
DKL

(
q

∣∣∣∣∣∣∣∣p+ q

2

)
,

we proved that
min
G

max
D

V (G,D) = min
p

2DJS(p||q)− log 4.

Here, the Jensen-Shannon divergence can be generalized to the so-called f -divergence. The f -
divergence of two distributions p and q is defined as

Df (p||q) =

∫
Rd
q(x)f

(
p(x)

q(x)

)
dx.

With this, one may consider a generalization of the GAN framework by taking

min
q

Df (p||q).

This is the f -GAN framework proposed by Nowozin et al. [NCT16].

3 Wasserstein GAN

The Wasserstein GAN [ACB17] is another variant of GAN, extending the idea of f -GAN. The
important component of f -GAN is that the generator attempts to mimick the true distribution p
by minimizing the f -divergence of p and q. The Wasserstein GAN is basically that the f -divergence
is replaced by the so-called Wasserstein distance. For p ≥ 1, the p-Wasserstein distance between
two distributions p and q with respect to a norm ‖ · ‖ is defined as

W (p, q) := inf
Π

{(
E(ξ,ξ′)∼Π

[∥∥ξ − ξ′∥∥p]) 1
p : Π has marginal distributions p, q

}
.

What is commonly used in practice is the 1-Wasserstein distance with respect to the `2-norm, given
by

W (p, q) := inf
Π

{
E(ξ,ξ′)∼Π

[∥∥ξ − ξ′∥∥
2

]
: Π has marginal distributions p, q

}
.

Throughout the section, we stick to the 1-Wasserstein distance with respect to the `2-norm, and we
refer to it simply by the Wasserstein distance. The Wasserstein distance is also called the earth
mover’s distance, as it can be interpreted as the minimum transportation cost to move some

2

Figure 19.1: Illustrating the Wasserstein distance as optimal transport

probability mass (dirt) from one distribution to form the other distribution. The Wasserstein GAN
is simply the GAN framework trained by

min
q

W (p, q).

By the Kantorovich-Rubinstein duality theorem, the Wasserstein distance can be rewritten as
follows.

W (p, q) = sup {Ex∼p [h(x)]− Ex∼q [h(x)] : h is 1-Lipschitz continuous} .

In fact, we have

sup {Ex∼p [h(x)]− Ex∼q [h(x)] : h is L-Lipschitz continuous} = L ·W (p, q).

Then we may consider
min
q

max
h:Lipschitz

Ex∼p [h(x)]− Ex∼q [h(x)] .

One may take a neural network parameterized by ω for h. Then

min
q

max
ω

Ex∼p [hω(x)]− Ex∼q [hω(x)] .

As the distribution q is obtained based on the generator network Gθ parameterized by θ, we get

min
θ

max
ω

Ex∼p [hω(x)]− Ez∼γ [hω(Gθ(z))] .

4 Adversarial Training

Consider a set of data (x1, y1), . . . , (xn, yn) where xi denotes the feature and yi is the corresponding
label. We are given a model fθ parametrized by θ that receives a feature vector x and predicts its
label as fθ(x). For the set of n data, we can consider the mean squared error given by

1

n

n∑
i=1

(yi − fθ(xi))2 .

For a general loss function `, we may also consider

1

n

n∑
i=1

` (fθ(xi), yi) .

3

Figure 19.2: Adversarial examples after data perturbations

In this section, we consider the adversarial training framework which aims to train the model
so that it is robust to some noise and perturbations present in data. Given a data point (x, y), one
may create an adversarial example by solving

max {` (fθ(x+ δ), y) : ‖δ‖ ≤ ε} .

Here, the feature vector x is corrupted by some small noise δ, so we would still predict the same
label y with x+ δ. However, the noise term δ is chosen so that the loss associated with the current
model fθ is maximized.

Let us consider the formulation with the `∞-norm:

max {` (fθ(x+ δ), y) : ‖δ‖∞ ≤ ε} .

The fast gradient sign method (FGSM) [GSS15] sets

δ = ε · sign (∇x` (fθ(x), y)) = ε · sign (∇xfθ(x)∇fθ` (fθ(x), y)) .

Although the FGSM provides a heuristic solution, it is widely used in practice to create adversarial

Figure 19.3: Adversarial examples by the FGSM

examples. One may attempt to directly solving the problem by considering the following composite
optimization formulation.

max
δ

f(δ) + g(δ)

where
f(δ) = ` (fθ(x), y) and g(δ) = 1 (‖δ‖∞ ≤ ε) .

4

A natural approach is to apply the proximal gradient ascent (PGA), which proceeds with

δt+1 = proxηg (δt + η∇f(δt)) .

Here, the proximal operator is given by

(
proxηg(δ)

)
i

=

ε, if δi ≥ ε,
δi, if −ε ≤ δi < ε,

−ε, if δi < −ε.
.

Indeed, adversarial perturbations alter the outcomes of a model drastically. Then the question is
about how to train a model that is robust to adversarial perturbations. Given the set of n data
(x1, y1), . . . , (xn, yn), we discussed the loss minimization given by

min
θ

1

n

n∑
i=1

` (fθ(xi), yi) .

Taking adversarial perturbations into account, one may consider

min
θ

1

n

n∑
i=1

max {` (fθ(xi + δ), yi) : ‖δ‖∞ ≤ ε} .

To optimization this formulation by a gradient-based method, one needs to compute

∇θ (max {` (fθ(xi + δ), yi) : ‖δ‖∞ ≤ ε}) .

In general, the function
max {` (fθ(xi + δ), yi) : ‖δ‖∞ ≤ ε}

is not differentiable with respect to θ. Nevertheless, we may take

δ∗ ∈ argmax {` (fθ(xi + δ), yi) : ‖δ‖∞ ≤ ε}

and use the gradient with respect to δ = δ∗:

∇θ` (fθ(xi + δ∗), yi) .

5 Sharpness-Aware Minimization

The next question that we consider is about generalization. It has been observed that flat minima
tend to generalize better than sharp minima. Rather than finding a single θ that has a low loss,
we look for θ such that parameter θ′ contained in the neighborhood of θ uniformly has a low loss
value. To achieve this goal, we consider the following formulation.

min
θ

1

n

n∑
i=1

max
δ:‖δ‖2≤ε

` (fθ+δ(xi), yi) .

This framework is sharpness-aware minimization (SAM) [FKMN21]. Here, the inner maxi-
mization can be approximated using the first-order Taylor approximation.

max
δ:‖δ‖2≤ε

` (fθ+δ(xi), yi) ' max
δ:‖δ‖2≤ε

{
` (fθ(xi), yi) + δ>∇θ` (fθ(xi), yi)

}
.

5

Figure 19.4: Sharp and flat minima

The maximizer of the approximation is simply given by

δ∗ =
ε

‖∇θ` (fθ(xi), yi) ‖2
∇θ` (fθ(xi), yi) .

Then we substitute δ = δ∗ and consider fθ+δ∗ :

` (fθ+δ∗(xi), yi) .

Here,

∇θ (` (fθ+δ∗(xi), yi)) =

(
1 +

dδ∗

dθ

)
∇θ` (fθ+δ∗(xi), yi) ' ∇θ` (fθ+δ∗(xi), yi) .

References

[ACB17] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adver-
sarial networks. In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th
International Conference on Machine Learning, volume 70 of Proceedings of Machine
Learning Research, pages 214–223. PMLR, 06–11 Aug 2017. 3

[FKMN21] Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware
minimization for efficiently improving generalization. In International Conference on
Learning Representations, 2021. 5

[GPAM+14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In
Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K.Q. Weinberger, editors,
Advances in Neural Information Processing Systems, volume 27. Curran Associates,
Inc., 2014. 2

[GSS15] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples. In Yoshua Bengio and Yann LeCun, editors, 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings, 2015. 4

[NCT16] Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Training generative
neural samplers using variational divergence minimization. In D. Lee, M. Sugiyama,
U. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information Pro-
cessing Systems, volume 29. Curran Associates, Inc., 2016. 2

6

	Outline
	Review of Generative Adversarial Network (GAN) and f-GAN
	Wasserstein GAN
	Adversarial Training
	Sharpness-Aware Minimization

