
DS 801: Advanced Optimization for Data Science KAIST, Fall 2024
Lecture #18: Generative Adversarial Networks May 8, 2024
Lecturer: Dabeen Lee

1 Outline

In this lecture, we cover

• introduction to Generative Adversarial Networks

• training GANS,

• f -GANs.

2 Introduction to Generative Adversarial Networks

Generative modelling is an area of machine learning where the goal is to model the underlying
distribution of a given data set, such as images and speech data. One may use a generative model
for the following scenarios. Given a data set of objects, we want to artificially generate similar
objects. For example, by learning from images of cats, we want to generate realistic image samples
of cats. For language modelling, we want to model the likelihood of some candidate sentences in
some context.

Let X ⊆ Rd be a given data set. For a grayscale image, we have d = 106. For the MNIST data
set of handwritten digits, we have d = 28 × 28 = 784. Our assumption is that the training data
set X is generated by a probability distribution µ with density function p(x). In other words, X
connsists of samples drawn from µ. Then a generative model’s goal is to learn and obtain a good
approximation of µ based on X .

In this lecture, we study Generative Adversarial Networks (GANs) [GPAM+14] that are a
generative modelling framework. In fact, it is an implicit generative model in the sense that a
GAN is trained to generate samples, not explicitly representing a probability distribution. To be
more specific, the generator network G receives a code vector z ∈ Rk and produces a sample

x = G(z).

Here, G : Rk → Rd is a determistic mapping while z is drawn from a fixed distribution γ such as
the standard Guassian distribution N(0, Ik). Note that the generator network corresponds to the
distribution ν with the density function

q(x) = γ
(
G−1(x)

)
.

Hence, the generator network produces a sample from the distribution ν with density function q
without explicitly modeling q.

As GANs do not directly model a probability distribution, we cannot use maximum likelihood to
train them. Instead, GANs use a novel training framework based on the discriminator network
D. Here, the discriminator D takes a sample x and returns

D(x) ∈ [0, 1]

1

that measures the probability of x coming from the true data. Basically, when the generator
G produces a sample x = G(z), the discriminator classifies whether x comes from the training
data set or were given by G. Then the objective of the generator is to output samples that are
indistinguishable from the true data.

Training a GAN is done with a loss function given by

V (G,D) = Ex∼µ [logD(x)] + Ez∼γ [log(1−D(G(z)))] .

Note that given a fixed generator G, maximizing V (G,D) with respect to D requires making D(x)
high for x coming from the true data while making D(G(z)) small for z ∼ γ. Hence, by considering

max
D

V (G,D),

one can train the discriminator so that it assigns a high value to x from the true data and a small
value to G(z) returned by the generator. Meanwhile, the generator’s goal is to fool the discriminator
by making it end up assigning a high value to G(z). One can achieve this goal by considering

min
G

max
D

V (G,D).

This is a minimax optimization problem.

Recall that the generator G represents a distribution with density function q(x) = γ(G−1(x)) and
ν denotes the distribution. Then

V (G,D) = Ex∼µ [logD(x)] + Ez∼γ [log(1−D(G(z)))]

= Ex∼µ [logD(x)] + Ex∼ν [log(1−D(x))]

=

∫
Rd

logD(x)dµ(x) +

∫
Rd

log(1−D(x))dν(x)

=

∫
Rd

(p(x) logD(x) + q(x) log(1−D(x))) dx.

Proposition 18.1. For a fixed generator G that corresponds to density q, the optimal discriminator
is attained by

D∗(x) =
p(x)

p(x) + q(x)

for x ∈ supp(µ) ∪ supp(ν).

Proof. For x ∈ supp(µ) ∪ supp(ν), we have p(x), q(x) > 0. Note that

h(y) := p(x) log y + q(x) log log(1− y)

is maximized at y = p(x)/(p(x) + q(x)). Hence, setting D(x) = p(x)/(p(x) + q(x)) for x ∈
supp(µ) ∪ supp(ν) would maximize V (G,D).

By Proposition 18.1, we have

max
D

V (G,D) =

∫
Rd

(
p(x) log

p(x)

p(x) + q(x)
+ q(x) log

q(x)

p(x) + q(x)

)
dx.

The Kullback-Leibler(KL) divergence of two distributions p and q is defined as

DKL(p||q) =
∫
Rd

p(x) log

(
p(x)

q(x)

)
dx.

2

Moreover, the Jensen-Shannon divergence of p and q is defined as

DJS(p||q) =
1

2
DKL

(
p

∣∣∣∣∣∣∣∣p+ q

2

)
+

1

2
DKL

(
q

∣∣∣∣∣∣∣∣p+ q

2

)
.

Theorem 18.2. The optimal generator G that solves

min
G

(
max
D

V (G,D)

)
is given by setting

q(x) = p(x) and D(x) =
1

2

for all x ∈ supp(µ).

Proof. Note that when q(x) = p(x), the optimal discriminator is given by D(x) = 1/2. In this case,
we have

V (G,D) = log
1

2

∫
Rd

(p(x) + q(x)) dx = − log 4.

In general,

max
D

V (G,D)

=

∫
Rd

(
p(x) log

p(x)

p(x) + q(x)
+ q(x) log

q(x)

p(x) + q(x)

)
dx

=

∫
Rd

(
p(x) log

2p(x)

p(x) + q(x)
+ q(x) log

2q(x)

p(x) + q(x)

)
dx− log

1

2

∫
Rd

(p(x) + q(x)) dx

= DKL

(
p

∣∣∣∣∣∣∣∣p+ q

2

)
+DKL

(
q

∣∣∣∣∣∣∣∣p+ q

2

)
− log 4

= 2DJS(p||q)− log 4.

It is known that the Jensen-Shannon divergence is always nonnegative and has value zero only if
p = q.

Hence, this theorem implies that the optimal generator corresponds to the true distribution.

3 Training GANs

In the previous section, we saw that the optimal solution to the minimax formulation of a GAN
corresponds to the true distribution. Then the next question is how we train a GAN to find an
optimal generator. The next theorem suggests an iterative procedure to train a GAN.

Theorem 18.3. Suppose that at each iteration, the discriminator D is allowed to reach its optimum
D∗ given q. Then an algorithm that updates q to minimize∫

Rd

(p(x) logD∗(x) + q(x) log(1−D∗(x))) dx

guarantees that q converges to p.

3

In practice, we use neural networks for the generator and discriminator networks. Suppose that

G = Gθ and D = Dω

where Gθ and Dω are neural networks parametrized by θ and ω, respectively. Then the loss function
is given by

V (θ, ω) = Ex∼µ [logDω(x)] + Ez∼γ [log(1−Dω(Gθ(z)))] .

To solve the minimax optimization of V (θ, ω), we obtain unbiased estimators of ∇θV (θ, ω) and
∇ω(θ, ω) based on minibatch data samples. Algorithm 1 provides a general template for stochastic

Algorithm 1 A Template for Stochastic Gradient Methods for Training GANs

for number of training iterations do
for k steps do

Sample minibatch of m samples z1, . . . , zm from γ.
Sample minibatch of m data x1, . . . , xm from µ
Update the discriminator network Dω by ascending its stochastic gradient:

1

m

m∑
i=1

∇ω

(
logDω(x

i) + log(1−Dω(Gθ(z
i)))

)
end for
Sample minibatch of m samples z1, . . . , zm from γ.
Update the generator network Gθ by descending its stochastic gradient:

1

m

m∑
i=1

∇θ

(
log(1−Dω(Gθ(z

i)))
)

end for

gradient methods for training GANs. One may use various optimizers such as momentum methods.

4 f-GAN

Recall that when the discriminator D reaches optimum given by

D∗(x) =
p(x)

p(x) + q(x)
,

we have
V (G,D∗) = DJS(p||q)− log 4.

Then an optimal generator can be found by computing q that minimizes DJS(p||q). Here, the
Jensen-Shannon divergence DJS(p||q) measures the discrepancy between p and q. In fact, one may
generalize GANs by considering the notion of f -divergence. The f -divergence of two distributions
p and q is defined as

Df (p||q) =
∫
Rd

q(x)f

(
p(x)

q(x)

)
dx.

4

Based on the Fenchel conjugate of f , it follows that

Df (p||q) =
∫
Rd

q(x) sup
t

{
t
p(x)

q(x)
− f∗(t)

}
dx

=

∫
Rd

sup
t

{t · p(x)− f∗(t) · q(x)} dx

≥ sup
T∈T

∫
Rd

(p(x)T (x)− q(x)f∗(T (x))) dx

= sup
T∈T

(Ex∼µ [T (x)]− Ex∼ν [f
∗(T (x))])

where T is a family of functions. Based on this formulation, we can consider

min
ν

max
T

Ex∼µ [T (x)]− Ex∼ν [f
∗(T (x))] .

This framework is referred to as the f -GAN and the Variational Divergence Minimization (VDM)
framework [NCT16].

Example 18.4. Let f be given by

f(y) = − log(y + 1) + log y + (y + 1) log 2.

Then f∗(t) = − log(2− et). In this case, we have

min
ν

max
T

Ex∼µ [T (x)] + Ex∼ν

[
log(2− eT (x))

]
.

Setting

D(x) = 1− 1

2
eT (x),

the formulation is equivalent to

min
ν

max
T

Ex∼µ [logD(x)] + Ex∼ν [log(1−D(x))] + log 4,

which is the first version of GAN.

We may model the function T (x) by a neural network given by

T (x) = Tω(x) = gf (Vω(x))

where gf is an output activation function specific to the f -divergence and Vω is a neural network
parametrized by ω. Then the minimax optimization framework boils down to

min
ν

max
ω

Ex∼µ [gf (Vω(x))] + Ex∼ν [−f∗(gf (Vω(x)))] .

To train an f -GAN, one may generalize Algorithm 1 (see [Wan20]). However, the original pa-
per [NCT16] uses what is called the single-step gradient method that does not use inner loops to
solve the inner maximization problem. The single-step gradient method is a stochastic version of
gradient descent ascent.

5

References

[GPAM+14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In
Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K.Q. Weinberger, editors,
Advances in Neural Information Processing Systems, volume 27. Curran Associates,
Inc., 2014. 2

[NCT16] Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Training generative
neural samplers using variational divergence minimization. In D. Lee, M. Sugiyama,
U. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information Pro-
cessing Systems, volume 29. Curran Associates, Inc., 2016. 4, 4

[Wan20] Yang Wang. A mathematical introduction to generative adversarial nets (gan), 2020.
4

6

	Outline
	Introduction to Generative Adversarial Networks
	Training GANs
	f-GAN

