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1 Outline

In this lecture, we cover

• algorithms for minimax optimization,

• variational inequality.

2 More Algorithms for Minimax Optimization

We consider minimax optimization
min
x∈X

max
y∈Y

ϕ(x, y)

where X ⊆ Rd, Y ⊆ Rp, and ϕ : X × Y → R. Recall that a point (x̄, ȳ) ∈ X × Y is an ϵ-saddle
point if

0 ≤ max
y∈Y

ϕ(x̄, y)−min
x∈X

ϕ(x, ȳ) ≤ ϵ.

In the last lecture, we discussed Gradient Descent Ascent (GDA) for minimax optimization. In
this lecture, we will cover more algorithms for minimax optimization.

We say that ϕ : X × Y → R is convex-concave if ϕ : X × Y → R is convex in x and concave in
y. We say that ϕ : X × Y → R is L-Lipschitz continuous if

|ϕ(x1, y1)− ϕ(x2, y2)| ≤ L∥(x1, y1)− (x2, y2)∥2 ∀(x1, y1), (x2, y2) ∈ X × Y.

We say that ϕ is α-strongly-convex-strongly-concave if ϕ is α-strongly convex in x and α-
strongly concave in y. The α-strong convexity means that for any fixed y ∈ Y , we have

ϕ(x1, y) ≥ ϕ(x2, y) +∇xϕ(x2, y)
⊤(x1 − x2) +

α

2
∥x1 − x2∥22, ∀x1, x2 ∈ X.

The α-strong concavity means that for any fixed x ∈ X, we have

−ϕ(x, y1) ≥ −ϕ(x, y2)−∇yϕ(x, y2)
⊤(y1 − y2) +

α

2
∥y1 − y2∥22, ∀y1, y2 ∈ Y.

Moreover, we say that ϕ is β-smooth if

|∇ϕ(x1, y1)−∇ϕ(x2, y2)| ≤ β∥(x1, y1)− (x2, y2)∥2 ∀(x1, y1), (x2, y2) ∈ X × Y

where

∇ϕ(x, y) =
(
∇xϕ(x, y)

⊤,∇yϕ(x, y)
⊤
)⊤

.
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Algorithm 1 Gradient Descent Ascent

Initialize x1 ∈ X and y1 ∈ Y .
for t = 1, . . . , T do

Take a step size ηt > 0
Update xt+1 = projX(xt − ηt∇xϕ(xt, yt))
Update yt+1 = projY (yt + ηt∇yϕ(xt, yt))

end for

2.1 Gradient Descent Ascent Revisited

Assuming that ϕ is differentiable, GDA works as in Algorithm 1. The following is a convergence
guarantee for Algorithm 1 for Lipschitz continuous functions.

Theorem 17.1. Let ϕ : X×Y → R be a L-Lipschitz continuous convex-concave function. Assume
that ∥x1 − x2∥2 ≤ R for any x1, x2 ∈ X and ∥y1 − y2∥2 ≤ R for any y1, y2 ∈ Y . Then Algorithm 1
with step size η = R/L

√
T guarantees that for any (x, y) ∈ X × Y ,

ϕ

(
1

T

t∑
t=1

xt, y

)
− ϕ

(
x,

1

T

t∑
t=1

yt

)
≤ 2LR√

T
.

Theorem 17.1 implies that GDA finds an ϵ-saddle point after O(1/ϵ2) iterations for a Lipschitz
continuous convex-concave function.

Recall that gradient descent can have a faster convergence for smooth functions than the case of
Lipschitz continuous functions. In fact, that is not the case for GDA. The following provides a
convergence guarantee for the case of smooth functions.

Theorem 17.2. Let ϕ : X × Y → R be a β-smooth convex-concave function. Assume that ∥x1 −
x2∥2 ≤ R for any x1, x2 ∈ X and ∥y1 − y2∥2 ≤ R for any y1, y2 ∈ Y . Then Algorithm 1 with step
size η = R/L

√
T where

L = 2βR+ ∥∇ϕ(x1, y1)∥2
guarantees that for any (x, y) ∈ X × Y ,

ϕ

(
1

T

t∑
t=1

xt, y

)
− ϕ

(
x,

1

T

t∑
t=1

yt

)
≤ 2LR√

T
.

Proof. As ϕ is β-smooth, we have that

∥∇ϕ(x, y)∥2 ≤ ∥∇ϕ(x1, y1)∥2 + β∥(x, y)− (x1, y1)∥2
≤ ∥∇ϕ(x1, y1)∥2 + β∥x− x1∥2 + β∥y − y1∥2
≤ L.

This implies that ϕ is L-Lipschitz continuous. Then the result follows from Theorem 17.1.

What is perhaps more surprising is that the convergence rate for smooth functions given by Theo-
rem 17.2 is tight. In contrast, gradient descent applied to smooth convex minimization guarantees
a rate of O(1/T ).

Moreover, if we further assume that ϕ is α-strongly-convex-strongly-concave, then GDA can con-
verge at a exponentially fast rate.
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Theorem 17.3. Let ϕ : X × Y → R be a β-smooth α-strongly-convex-strongly-concave function.
Let κ denote the condition number κ = β/α. Then Algorithm 1 with step size η = α/β2 guarantees
that for any (x, y) ∈ X × Y ,

ϕ (xt, y)− ϕ (x, yt) ≤ βκ

(
1− 1

κ2

)t

∥(x1, y1)− (x, y)∥22 ∀t ≥ 1.

Theorem 17.3 implies that GDA provides a convergence rate of O(κ2 log(1/ϵ)).

2.2 Extra Gradient Method

In the previous subsection, we considered GDA and its performance for structured functions. A
simple modification to GDA is shown to provide improved performances. The extra gradient
(EG) method works as follows. Given (xt, yt) ∈ X × Y , we apply

xt+ 1
2
= projX (xt − η∇xϕ(xt, yt)) ,

yt+ 1
2
= projY (yt + η∇yϕ(xt, yt)) ,

xt+1 = projX

(
xt − η∇xϕ

(
xt+ 1

2
, yt+ 1

2

))
,

yt+1 = projY

(
yt + η∇yϕ

(
xt+ 1

2
, yt+ 1

2

))
.

Basically, to obtain (xt+1, yt+1) from (xt, yt), we compute the gradient ∇ϕ(xt, yt) and the gradient

∇ϕ
(
xt+ 1

2
, yt+ 1

2

)
.

Theorem 17.4. Let ϕ : X × Y → R be a β-smooth convex-concave function. Assume that ∥x1 −
x2∥2 ≤ R for any x1, x2 ∈ X and ∥y1 − y2∥2 ≤ R for any y1, y2 ∈ Y . Then the extra gradient
method with step size η = 1/β guarantees that for any (x, y) ∈ X × Y ,

ϕ

(
1

T

t∑
t=1

xt+ 1
2
, y

)
− ϕ

(
x,

1

T

t∑
t=1

yt+ 1
2

)
≤ βR2

2T
.

Here, we use a constant step size η = 1/β for EG, which provides a convergence rate of O(1/T ).
It is proved that the rate O(1/T ) is optimal [OX21]. Furthermore, if we further assume that ϕ is
strongly-convex-strongly-concave, then we get the following improved guarantee.

Theorem 17.5. Let ϕ : X × Y → R be a β-smooth α-strongly-convex-strongly-concave function.
Then the extra gradient method with step size η = 1/4β guarantees that for any (x, y) ∈ X × Y ,

ϕ (xt, y)− ϕ (x, yt) ≤ βκ

(
1− 1

4κ

)t

∥(x1, y1)− (x, y)∥22 ∀t ≥ 1.

Theorem 17.5 implies that EG provides a convergence rate of O(κ log(1/ϵ)). Here, the rate of order
O(κ log(1/ϵ)) is optimal [ZHZ22].
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2.3 Optimistic GDA

The next algorithm is referred to as Optimistic Gradient Descent Ascent (OGDA). The
algorithm proceeds with the following update rule.

xt+ 1
2
= projX

(
xt − η∇xϕ

(
xt− 1

2
, yt− 1

2

))
,

yt+ 1
2
= projY

(
yt + η∇yϕ

(
xt− 1

2
, yt− 1

2

))
,

xt+1 = projX

(
xt − η∇xϕ

(
xt+ 1

2
, yt+ 1

2

))
,

yt+1 = projY

(
yt + η∇yϕ

(
xt+ 1

2
, yt+ 1

2

))
.

The algorithm can be equivalently expressed in terms of the following update rule.

xt+1 = xt − 2η∇xϕ(xt, yt) + η∇xϕ(xt−1, yt−1),

yt+1 = yt − 2η∇yϕ(xt, yt) + η∇yϕ(xt−1, yt−1).

OGDA provides a convergence rate of O(1/ϵ) for smooth functions and a rate of O(κ log(1/ϵ)) for
smooth and strongly-convex-strongly-concave functions.

2.4 Proximal Point Algorithm

Proximal Point Algorithm (PPA) computes (xt+1, yt+1) as the unique solution to the following
minimax optimization problem,

min
x∈X

max
y∈Y

ϕ(x, y) +
1

2η
∥x− xt∥22 −

1

2
∥y − yt∥22.

PPA also guarantees a rate of O(1/ϵ) for the smooth case [MOP20]. We may argue that the update
rule of PPA is equivalent to

xt+1 = projX(xt − η∇xϕ(xt+1, yt+1)),

yt+1 = projY (yt + η∇yϕ(xt+1, yt+1)).

Here, to follow directly this update rule, we need to compute ∇ϕ(xt+1, yt+1). In this regard, EG
and OGDA can be interpreted as some approximate versions of PPA:

xt+1 = projX(xt − η∇xϕ(xt+1, yt+1) + ϵxt ),

yt+1 = projY (yt + η∇yϕ(xt+1, yt+1) + ϵyt )

where

• for EG, we have

ϵxt = η
(
∇xϕ(xt+1, yt+1)−∇xϕ

(
xt+ 1

2
, yt+ 1

2

))
,

ϵyt = η
(
∇yϕ(xt+1, yt+1)−∇yϕ

(
xt+ 1

2
, yt+ 1

2

))
,

• for OGDA, we have

ϵxt = η (∇xϕ(xt+1, yt+1)− 2∇xϕ (xt, yt) +∇xϕ (xt−1, yt−1)) ,

ϵyt = η (∇yϕ(xt+1, yt+1)− 2∇yϕ (xt, yt) +∇yϕ (xt−1, yt−1)) .
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3 Variational Inequalities

Consider the problem of minimizing a convex function f over a domain X. Recall that x∗ is an
optimal solution if and only if

∇f(x∗)⊤(x− x∗) ≥ 0 ∀x ∈ X.

We can generalize this to minimax optimization. For the minimiax optimization of ϕ over X × Y ,
(x∗, y∗) is a saddle point if and only if

∇xϕ(x
∗, y∗)⊤(x− x∗)−∇yϕ(x

∗, y∗)⊤(y − y∗) ≥ 0 ∀(x, y) ∈ X × Y.

For convex minimization, we can define the gradient operator F = ∇f . Then the optimality
condition becomes

F (x∗)⊤(x− x∗) ≥ 0 ∀x ∈ X.

For minimax optimization, we define the operator

F (x, y) =

[
∇xϕ(x, y)
−∇yϕ(x, y)

]
.

Then the condition for a saddle point can be equivalently written as

F (x∗, y∗)⊤ ((x, y)− (x∗, y∗)) ≥ 0 ∀(x, y) ∈ X × Y.

In general, given a domain Z ⊆ Rd and an operator F : Z → Rd, the variational inequality
problem is to find a solution z∗ ∈ Z such that

F (z∗)⊤(z − z∗) ≥ 0 ∀z ∈ Z.

We say that operator F is monotone if

(F (u)− F (v))⊤(u− v) ≥ 0 ∀u, v ∈ Z.

Note that for a convex function f , the gradient operator F = ∇f is monotone. We may also prove
that for a convex-concave function ϕ, the associated operator F = [∇xϕ

⊤,−∇yϕ
⊤]⊤ is monotone

as well. Furthermore, we say that operator F is β-Lipschitz continuous if

∥F (u)− F (v)∥2 ≤ β∥u− v∥2 ∀u, v ∈ Z.

For convex minimization and minimax optimization, the β-Lipschitz continuity of the associated
operators is equivalent to β-smoothness.

EG converges to a solution of the variational inequality problem with a rate of O(1/T ) [Nem04].
The algorithm is also referred to as Mirror-Prox. One may come up with an accelerated version
of Mirror-Prox [CLO17].
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