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1 Outline

In this lecture, we cover

e algorithms for minimax optimization,

e variational inequality.

2 More Algorithms for Minimax Optimization

We consider minimax optimization

mip mex o(x,y)

where X CR? Y C RP, and ¢ : X x Y — R. Recall that a point (Z,7) € X x Y is an e-saddle
point if

0 S manb(i‘,y) - Inlngb(x,gj) g €.
yey reX

In the last lecture, we discussed Gradient Descent Ascent (GDA) for minimax optimization. In
this lecture, we will cover more algorithms for minimax optimization.

We say that ¢ : X x Y — R is convex-concave if ¢ : X x Y — R is convex in x and concave in
y. We say that ¢ : X x Y — R is L-Lipschitz continuous if

|p(z1,y1) — P2, 92)| < Lll(z1,91) — (w2, 92)ll2 V(21,91), (T2,92) € X X Y.

We say that ¢ is a-strongly-convex-strongly-concave if ¢ is a-strongly convex in z and a-
strongly concave in y. The a-strong convexity means that for any fixed y € Y, we have

o
d(x1,y) > ¢(w2,y) + Vad(z2,y) (21 — 22) + e = woll3, Vai,wp € X,
The a-strong concavity means that for any fixed z € X, we have
@
—d(x,y1) > —d(x,y2) — Vyo(x,42) T (11 — v2) + Sl = all3, Vyr,p2 €Y.

Moreover, we say that ¢ is f-smooth if

IVo(z1, 1) = Vo(wa, )| < Bll(x1,91) — (2, 82)[2 V(@1 91), (22, 42) € X XV

where

V(JS(Z', y) = (vm¢($a y)T, Vy¢($, y)T)T .



Algorithm 1 Gradient Descent Ascent

Initialize x1 € X and y; € Y.
fort=1,...,7 do

Take a step size 1, > 0

Update x;y1 = projx(x¢ — mVad(xe, yt))

Update yi+1 = projy (v + n:Vyo (e, yt))
end for

2.1 Gradient Descent Ascent Revisited

Assuming that ¢ is differentiable, GDA works as in Algorithm 1. The following is a convergence
guarantee for Algorithm 1 for Lipschitz continuous functions.

Theorem 17.1. Let ¢ : X XY — R be a L-Lipschitz continuous convex-concave function. Assume
that ||z1 — z2|l2 < R for any x1,x9 € X and ||y1 — y2|l2 < R for any y1,y2 € Y. Then Algorithm 1
with step size n = R/L\T guarantees that for any (z,y) € X x Y,

(i) i) 2

Theorem 17.1 implies that GDA finds an e-saddle point after O(1/€?) iterations for a Lipschitz
continuous convex-concave function.

Recall that gradient descent can have a faster convergence for smooth functions than the case of
Lipschitz continuous functions. In fact, that is not the case for GDA. The following provides a
convergence guarantee for the case of smooth functions.

Theorem 17.2. Let ¢ : X XY — R be a B-smooth convezx-concave function. Assume that ||z1 —
xalle < R for any x1,z2 € X and ||y1 — y2|l2 < R for any y1,y2 € Y. Then Algorithm 1 with step
size 1 = R/LV/T where

L=26R+[Vé(x1,y1)ll2

guarantees that for any (z,y) € X x Y,

b))

Proof. As ¢ is S-smooth, we have that

IVo(z, y)ll2 < [[Vo(zr,y1)ll2 + Bll(z,y) — (x1,31)ll2
< IVo(@1, y1)ll2 + Blle — z1ll2 + Blly — w12
< L.

This implies that ¢ is L-Lipschitz continuous. Then the result follows from Theorem 17.1. O

What is perhaps more surprising is that the convergence rate for smooth functions given by Theo-
rem 17.2 is tight. In contrast, gradient descent applied to smooth convex minimization guarantees
a rate of O(1/T).

Moreover, if we further assume that ¢ is a-strongly-convex-strongly-concave, then GDA can con-
verge at a exponentially fast rate.



Theorem 17.3. Let ¢ : X XY — R be a B-smooth a-strongly-convez-strongly-concave function.
Let k denote the condition number k = B/a. Then Algorithm 1 with step size n = o/ 3? guarantees
that for any (z,y) € X x Y,

t
b (20,) — 6 (x.y1) < Bn <1 _ ;) I o) — @ y)l2 v 1.

Theorem 17.3 implies that GDA provides a convergence rate of O(x?log(1/e)).
2.2 Extra Gradient Method

In the previous subsection, we considered GDA and its performance for structured functions. A
simple modification to GDA is shown to provide improved performances. The extra gradient
(EG) method works as follows. Given (z¢,y:) € X x Y, we apply

Tl = projx (zr — nVad(wt, yt))
Yerl = projy (y¢ + nVyo(ze, yr)) ,
Tty1 = Projy (ﬂﬁt — NV (OEH%,?JH%)) ;
Yt+1 = Projy (yt +nVyo (wH%,yH%)) -

Basically, to obtain (z;41,y¢+1) from (x¢,y:), we compute the gradient Vé(zy, y;) and the gradient

Vo (g vnis):

Theorem 17.4. Let ¢ : X x Y — R be a S-smooth convex-concave function. Assume that ||z1 —
xalle < R for any 1,292 € X and ||y1 — y2|l2 < R for any y1,y2 € Y. Then the extra gradient
method with step size n = 1/ guarantees that for any (x,y) € X XY,

t t
1 Z 1 Z BR?
’ (T t=1 xH%jy) o (CC7 T t=1 yHé) = 2T

Here, we use a constant step size n = 1/ for EG, which provides a convergence rate of O(1/T).
It is proved that the rate O(1/T) is optimal [OX21]. Furthermore, if we further assume that ¢ is
strongly-convex-strongly-concave, then we get the following improved guarantee.

Theorem 17.5. Let ¢ : X XY — R be a B-smooth «a-strongly-convez-strongly-concave function.
Then the extra gradient method with step size n = 1/4 guarantees that for any (z,y) € X XY,

t
()~ o) < 0 (1= 1) Iowm) — @)l ve=1.

Theorem 17.5 implies that EG provides a convergence rate of O(xlog(1/¢)). Here, the rate of order
O(klog(1/€)) is optimal [ZHZ22].



2.3 Optimistic GDA

The next algorithm is referred to as Optimistic Gradient Descent Ascent (OGDA). The
algorithm proceeds with the following update rule.

Tyl = projx (xt —nVazd (xt 1LY %> ,
Y4l = Projy (yt TNVyo (%7%7%75)
Tr1 = Pprojy (z ( =NV (UCH L, Yy 1 )
Yt+1 = projy (yt +nVyo (%%ﬁ%%)) :

The algorithm can be equivalently expressed in terms of the following update rule.

Tip1 = T — 20V (e, Yi) + MV d(2i—1, Y1),
Yir1 = Yt — 20Vyd(Te, yt) + Vyd(Ti—1, Ye—1).

OGDA provides a convergence rate of O(1/e) for smooth functions and a rate of O(xlog(1/¢)) for
smooth and strongly-convex-strongly-concave functions.

2.4 Proximal Point Algorithm

Proximal Point Algorithm (PPA) computes (z;41,¥:+1) as the unique solution to the following
minimax optimization problem,

mipmax  ¢(z,9) + 5 llr =@z = lly = vellz:

PPA also guarantees a rate of O(1/¢) for the smooth case [MOP20]. We may argue that the update
rule of PPA is equivalent to

Typ1 = projy (¢ — NVad(Te41, Yes1)),
Yi+1 = Projy (ye + NVyd(xi11, yi41))-

Here, to follow directly this update rule, we need to compute Vo (x¢11,ys41). In this regard, EG
and OGDA can be interpreted as some approximate versions of PPA:

Tey1 = Projx (¢ — NV d(Te1, Yeg1) + €7),
Yi+1 = Projy (ye + vaﬁb(xtﬂa Yir1) + Ety)

where

e for EG, we have

T __
€& =1

(Vxﬁb(ﬂftﬂ, Ytr1) — Ve @ <$t+%, yH%)) ;
e =n (Vy¢(xt+1a Y1) — Vyo (xt%,yt%)) ;

e for OGDA, we have

e =N (Vad(@ig1, Yi41) — 2Vad (2, y¢) + Vb (X4-1,Y1-1))
e/ =0 (Vyd(@ir1, Y1) — 2Vyd (24, yt) + Vy@ (21, y1-1)) -
4



3 Variational Inequalities

Consider the problem of minimizing a convex function f over a domain X. Recall that z* is an
optimal solution if and only if

Vi) (z—2*)>0 VzeX.

We can generalize this to minimax optimization. For the minimiax optimization of ¢ over X x Y,
(z*,y*) is a saddle point if and only if

Ved(a*,y*) (@ —2%) = Vyo(z*,y") T (y —y*) >0 V(z,y) € X x Y.

For convex minimization, we can define the gradient operator F' = Vf. Then the optimality

condition becomes
F(z*)"(x —2*) >0 VreX.

For minimax optimization, we define the operator

Ved(z,y) ]
_vy¢(xa y) .

Then the condition for a saddle point can be equivalently written as

Fe) - |

F(a*,y") " ((z,y) = (2%,5%) 20 V(z,y) € X x Y.

In general, given a domain Z C R? and an operator F : Z — RY, the variational inequality
problem is to find a solution z* € Z such that

F(z)"(z—=2*)>0 Vze Z
We say that operator F' is monotone if
(F(u) — F()) " (u—v) >0 Yu,ve Z

Note that for a convex function f, the gradient operator F' = V f is monotone. We may also prove
that for a convex-concave function ¢, the associated operator F' = [V$¢T, —qubT]T is monotone
as well. Furthermore, we say that operator I’ is f-Lipschitz continuous if

[1F(u) = F(o)ll2 < Bllu—vlla Vu,v € Z.

For convex minimization and minimax optimization, the S-Lipschitz continuity of the associated
operators is equivalent to S-smoothness.

EG converges to a solution of the variational inequality problem with a rate of O(1/T") [Nem04].
The algorithm is also referred to as Mirror-Prox. One may come up with an accelerated version
of Mirror-Prox [CLO17].
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