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1 Outline

In this lecture, we cover

• minimax optimization and applications,

• saddle point,

• minimax theorems,

• gradient descent ascent (GDA).

2 Introduction to Mininax Optimization

Let X ⊆ Rd, and let Y ⊆ Rp. Given a function φ : X × Y → R, we consider the following
optimization problem.

min
x∈X

max
y∈Y

φ(x, y).

The problem is referred to as min-max optimization and minimax optimization. The problem
can be interpreted as a game between two players, making decisions on x and y, respectively. The
x-player chooses a solution x from the domain X. Given x chosen by the x-player, the y-player
chooses a solution y from the domain Y to maximize the value of φ(x, y). The problem has many
applications in machine learning such as

• zero-sum game,

• constrained optimization,

• nonsmooth optimization,

• distributionally robust optimization,

• generative adversarial networks,

• sharpness-aware minimization.

In this lecture, we briefly discuss the first three applications. We will study the other two applica-
tions in depth later.

2.1 Zero-Sum Game

Suppose that we have two adversarial players. Player 1 chooses from d actions i ∈ [d] while player
2 chooses from m actions j ∈ [m]. If player 1 chooses i ∈ [d] and player 2 chooses j ∈ [m], then
player 1 loses aij while player gains aij . This is called a zero-sum game.

Both players can randomize their strategies, meaning that player 1 chooses x ∈ ∆d = {x ∈ [0, 1]d :
1>x = 1} and player 2 chooses y ∈ ∆m = {y ∈ [0, 1]m : 1>y = 1}. Then x>Ay is the expected loss
for player 1 and also the expected gain for player 2.
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Suppose that player 1 knows player 2’s strategy, given by a vector y ∈ ∆m. Then player 1 will
choose a strategy x ∈ ∆d so that the expected loss can be minimized and incurs a loss of

min
x∈∆d

x>Ay.

Given that player 2 knows player 1 will do this for any y, player 2 should choose y to maximize the
expected gain so that player 2 obtains a gain of

max
y∈∆m

min
x∈∆d

x>Ay.

2.2 Constrained Optimization

Consider the following inequality constrained problem.

minimize f(x)

subject to gi(x) ≤ 0 for i = 1, . . . ,m.
(16.1)

Note that

max
λ≥0

L(x, λ) = max
λ≥0

{
f(x) +

m∑
i=1

λigi(x)

}
.

If gi(x) > 0 for some i ∈ [m], then we can send λi to +∞, making L(x, λ) arbitrarily large. On the
other hand, if gi(x) ≤ 0 for all i ∈ [m], then maxλ≥0 L(x, λ) is attained at λ = 0, in which case,
maxλ≥0 L(x, λ) = f(x). This observation implies that

min
x

max
λ≥0

L(x, λ) = min
x
{f(x) : gi(x) ≤ 0 for i = 1, . . . ,m} .

2.3 Nonsmooth Optimization

Let us consider
min
x∈Rd

f(x) + g(Ax)

where

• f is smooth and convex,

• g is strongly convex but nonsmooth,

• A is a p× d matrix.

We may reformulate the problem by a minimax optimization problem based on Fenchel duality.
Here, we may rewrite g(Ax) as

g(Ax) = max
y∈Rp

{
y>Ax− g∗(y)

}
where g∗(y) is the Fenchel conjugate of g. Then the original problem with the composite objective
can be written as

min
x∈Rd

max
y∈Rp

f(x) + y>Ax− g∗(y).

Here, y>Ax is smooth in x and y. Moreover, it is known that the Fenchel conjugate of a strongly
convex function is smooth. Hence, the second formulation is a minimax optimization problem with
a smooth objective.
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2.4 Distributionally Robust Optimization

Stochastic optimization problems have the following form:

min
x

Eξ∼P [`(x, ξ)]

where

• `(x, ξ) is the loss under decision x and data ξ,

• P is the (unknown) distribution of data ξ.

A common practice is to estimate the distribution P based on data samples. Given n data points
ξ1, . . . , ξn, we take

Pn :=
1

n

n∑
i=1

δξi

where δξ is the Dirac distribution of ξ where the probability mass of 1 is given to ξ. Here,
we call Pn an empirical distribution. Empirical Risk Minimization (ERM) approximates the
stochastic optimization problem by replacing the true distribution P with the empirical distribution:

min
x

Eξ∼Pn [`(x, ξ)] = min
x

1

n

n∑
i=1

`(x, ξi).

Although ERM works well in practice in general, there exist some cases in which ERM suffers with
poor generalization performances. Under such scenarios, the empirical distribution Pn perhaps
does not approximate the true distribution well.

Inspired by the issue, Distributionally Robust Optimization (DRO) considers ambiguity
in inferring the true distribution based on the empirical distribution and aims to make a robust
decision even under such distributional ambiguity. The way it works is to consider a “family” of
distributions around Pn not just Pn itself. To be more specific, we consider

Fn = {Q : d(Q,Pn) ≤ ρ}

where

• Q denotes a probability distribution,

• d(Q,Pn) is a discrepancy function to meausre the discrepancy between Q and Pn,

• ρ is the radius on how much a distribution in the family Fn can differ from the empirical
distribution Pn.

Here, typical choices for the discrepancy function include

• the Kullback-Leibler (KL) divergence,

• the Wasserstein distance.

For these choices of the discrepancy function, we have statistical guarantees that the true distribu-
tion P belongs to the family Fn with high probability under a proper choice of the radius ρ. Then
we consider

min
x

max
Q∈Pn

Eξ∼Q [`(x, ξ)] .

Here, the inner maximization captures the expected loss under a worst-case distribution from the
family Fn.
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3 Saddle Point and Minimax Theorems

We start by proving the following result.

Theorem 16.1. Consider the minimax optimization problem. Then the following statement holds.

min
x∈X

max
y∈Y

φ(x, y) ≥ max
y∈Y

min
x∈X

φ(x, y).

Proof. Note that for any (x, y) ∈ X×Y , we have φ(x, y) ≥ minx∈X φ(x, y). Taking the maximum of
each side over y ∈ Y , we obtain maxy∈Y φ(x, y) ≥ maxy∈Y minx∈X φ(x, y). As this inequality holds
for every x ∈ X, taking the minimum of the left-hand side over x ∈ X preserves the inequality. If
done so, we deduce that minx∈X maxy∈Y φ(x, y) ≥ maxy∈Y minx∈X φ(x, y), as required.

Let us get back to the constrained optimization problem

minimize f(x)

subject to gi(x) ≤ 0 for i = 1, . . . ,m.
(16.2)

Recall that its Lagrangian is given by L(x, λ). Moreover, the Lagrangian dual function is given by

q(λ) = min
x
L(x, λ).

Then the Lagrangian dual problem is given by

max
λ≥0

q(λ) = max
λ≥0

min
x

L(x, λ).

Then Theorem 16.1 states that

min
x

max
λ≥0
L(x, λ) ≥ max

λ≥0
min
x
L(x, λ).

In fact, we know that if strong duality holds, then the equality holds as follows.

min
x

max
λ≥0
L(x, λ) = max

λ≥0
min
x
L(x, λ).

In general, when does such equality hold for a minimax optimization problem? In this section, we
provide other sufficient conditions under which the equality holds.

3.1 Saddle Point

We say that a solution (x∗, y∗) ∈ X × Y is a saddle point to the problem minx∈X maxy∈Y φ(x, y)
if

φ(x∗, y) ≤ φ(x∗, y∗) ≤ φ(x, y∗)

for all (x, y) ∈ X × Y . If (x∗, y∗) is a saddle point, then

φ(x∗, y∗) = max
y∈Y

φ(x∗, y) = min
x∈X

φ(x, y∗).

Theorem 16.2. If (x∗, y∗) is a saddle point, then

min
x∈X

max
y∈Y

φ(x, y) = φ(x∗, y∗) = max
y∈Y

min
x∈X

φ(x, y).

Proof. By definition, we obtain

max
y∈Y

φ(x∗, y) ≤ φ(x∗, y∗) ≤ min
x∈X

φ(x, y∗).

Moreover, this implies that

min
x∈X

max
y∈Y

φ(x∗, y) ≤ φ(x∗, y∗) ≤ max
x∈X

min
x∈X

φ(x, y∗).

By Theorem 16.1, it follows that the inequalities must hold with equality.
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3.2 Minimax Theorems

We provide two more sufficient conditions. The following theorem is due to John von Neumann.

Theorem 16.3. Assume that the following conditions are satisfied.

• X and Y are closed convex sets, and one of them is bounded.

• φ(x, y) is convex in x for any fixed y.

• φ(x, y) is concave in y for any fixed x.

Then minx∈X maxy∈Y φ(x, y) = maxy∈Y minx∈X φ(x, y).

For the zero-sum game, we know that ∆m and ∆d are both bounded.

min
x∈∆d

x
>

max
y∈∆m

Ay = max
y∈∆m

min
x∈∆d

x>Ay.

We also have the following result.

Theorem 16.4. Assume that the following conditions are satisfied.

• X and Y are closed convex sets,

• φ(x, y) is strongly convex in x for any fixed y.

• φ(x, y) is strongly concave in y for any fixed x.

Then minx∈X maxy∈Y φ(x, y) = maxy∈Y minx∈X φ(x, y).

4 Gradient Descent Ascent Algorithm

From the minimax optimization problem minx∈X maxy∈Y φ(x, y), we may consider

Primal : min
x∈X

{
φ(x) := max

y∈Y
φ(x, y)

}
Dual : max

y∈Y

{
φ(y) := min

x∈X
φ(x, y)

}
.

For any (x̄, ȳ) ∈ X × Y , Theorem 16.1 implies that

φ(x̄) = max
y∈Y

φ(x̄, y) ≥ min
x∈X

φ(x, ȳ) = φ(ȳ).

We say that a point (x̄, ȳ) ∈ X × Y is an ε-saddle point if

0 ≤ φ(x̄)− φ(ȳ) = max
y∈Y

φ(x̄, y)−min
x∈X

φ(x, ȳ) ≤ ε.

Note that if (x̄, ȳ) ∈ X × Y is an ε-saddle point, then

φ(x̄)−min
x∈X

φ(x) ≤ ε,

max
y∈Y

φ(y)− φ(ȳ) ≤ ε.
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Algorithm 1 Gradient Descent Ascent

Initialize x1 ∈ X and y1 ∈ Y .
for t = 1, . . . , T − 1 do

Obtain gx,t ∈ ∂xφ(xt, yt) and gy,t ∈ ∂yφ(xt, yt).
Update xt+1 = projX(xt − ηtgx,t) and yt+1 = projY (yt + ηtgy,t) for some step size ηt > 0.

end for
Return xT+1.

Let us consider an algorithm for solving the minimax optimization problem, whose pseudo-code is
given as in Algorithm 1. The algorithm is called the gradient descent ascent method. Note that
at each iteration, we simultaneously update both the primal variables x and the dual variables y.
We assumed that φ(x, y) is convex in x and concave in y. ∂xφ(x, y) is the subdifferential of φ(x, y)
for a fixed y, and ∂yφ(x, y) is the superdifferential of φ(x, y) for a fixed x.

Theorem 16.5. Let x̄T and ȳT be defined as

x̄T =

(
T∑
t=1

ηt

)−1 T∑
t=1

ηtxt, ȳT =

(
T∑
t=1

ηt

)−1 T∑
t=1

ηtyt.

Then for any (x, y) ∈ X × Y ,

φ(x̄T , y)− φ(x, ȳT ) ≤ 1

2
∑T

t=1 ηt

(
‖(x1, y1)− (x, y)‖22 +

T∑
t=1

η2
t ‖(gx,t, gy,t)‖22

)
.

Assuming that ‖(gx, gy)‖22 ≤ L2 for any gx ∈ ∂xφ(x, y) and gy ∈ ∂yφ(x, y) and that ‖(x1, y1) −
(x, y)‖22 ≤ R2, we can set ηt = R/(L

√
T ). Then for any (x, y) ∈ X × Y ,

φ(x̄T , y)− φ(x, ȳT ) ≤ LR√
T
.

In particular,

max
y∈Y

φ(x̄T , y)−min
x∈X

φ(x, ȳT ) ≤ LR√
T
.

Then setting T = O(1/ε2), we know that (x̄T , ȳT ) is an ε-saddle point.

6


	Outline
	Introduction to Mininax Optimization
	Zero-Sum Game
	Constrained Optimization
	Nonsmooth Optimization
	Distributionally Robust Optimization

	Saddle Point and Minimax Theorems
	Saddle Point
	Minimax Theorems

	Gradient Descent Ascent Algorithm

