1 Outline

In this lecture, we cover

- minimax optimization and applications,
- saddle point,
- minimax theorems,
- gradient descent ascent (GDA).

2 Introduction to Mininax Optimization

Let $X \subseteq \mathbb{R}^d$, and let $Y \subseteq \mathbb{R}^p$. Given a function $\phi : X \times Y \to \mathbb{R}$, we consider the following optimization problem.

$$\min_{x \in X} \max_{y \in Y} \phi(x, y).$$

The problem is referred to as **min-max optimization** and **minimax optimization**. The problem can be interpreted as a game between two players, making decisions on x and y, respectively. The x-player chooses a solution x from the domain X. Given x chosen by the x-player, the y-player chooses a solution y from the domain Y to maximize the value of $\phi(x, y)$. The problem has many applications in machine learning such as

- zero-sum game,
- constrained optimization,
- nonsmooth optimization,
- distributionally robust optimization,
- generative adversarial networks,
- sharpness-aware minimization.

In this lecture, we briefly discuss the first three applications. We will study the other two applications in depth later.

2.1 Zero-Sum Game

Suppose that we have two adversarial players. Player 1 chooses from d actions $i \in [d]$ while player 2 chooses from m actions $j \in [m]$. If player 1 chooses $i \in [d]$ and player 2 chooses $j \in [m]$, then player 1 loses a_{ij} while player gains a_{ij} . This is called a zero-sum game.

Both players can randomize their strategies, meaning that player 1 chooses $x \in \Delta_d = \{x \in [0, 1]^d : 1^{\top}x = 1\}$ and player 2 chooses $y \in \Delta_m = \{y \in [0, 1]^m : 1^{\top}y = 1\}$. Then $x^{\top}Ay$ is the expected loss for player 1 and also the expected gain for player 2.

Suppose that player 1 knows player 2's strategy, given by a vector $y \in \Delta_m$. Then player 1 will choose a strategy $x \in \Delta_d$ so that the expected loss can be minimized and incurs a loss of

$$\min_{x \in \Delta_d} x^\top A y.$$

Given that player 2 knows player 1 will do this for any y, player 2 should choose y to maximize the expected gain so that player 2 obtains a gain of

$$\max_{y \in \Delta_m} \min_{x \in \Delta_d} x^\top A y.$$

2.2 Constrained Optimization

Consider the following inequality constrained problem.

minimize
$$f(x)$$

subject to $g_i(x) \le 0$ for $i = 1, ..., m$. (16.1)

Note that

$$\max_{\lambda \ge 0} \quad \mathcal{L}(x,\lambda) = \max_{\lambda \ge 0} \left\{ f(x) + \sum_{i=1}^{m} \lambda_i g_i(x) \right\}.$$

If $g_i(x) > 0$ for some $i \in [m]$, then we can send λ_i to $+\infty$, making $\mathcal{L}(x, \lambda)$ arbitrarily large. On the other hand, if $g_i(x) \leq 0$ for all $i \in [m]$, then $\max_{\lambda \geq 0} \mathcal{L}(x, \lambda)$ is attained at $\lambda = 0$, in which case, $\max_{\lambda \geq 0} \mathcal{L}(x, \lambda) = f(x)$. This observation implies that

$$\min_{x} \max_{\lambda \ge 0} \quad \mathcal{L}(x, \lambda) = \min_{x} \{ f(x) : g_i(x) \le 0 \text{ for } i = 1, \dots, m \}.$$

2.3 Nonsmooth Optimization

Let us consider

$$\min_{x \in \mathbb{R}^d} \quad f(x) + g(Ax)$$

where

- f is smooth and convex,
- g is strongly convex but nonsmooth,
- A is a $p \times d$ matrix.

We may reformulate the problem by a minimax optimization problem based on **Fenchel duality**. Here, we may rewrite g(Ax) as

$$g(Ax) = \max_{y \in \mathbb{R}^p} \left\{ y^\top Ax - g^*(y) \right\}$$

where $g^*(y)$ is the **Fenchel conjugate** of g. Then the original problem with the composite objective can be written as

$$\min_{x \in \mathbb{R}^d} \max_{y \in \mathbb{R}^p} \quad f(x) + y^\top A x - g^*(y).$$

Here, $y^{\top}Ax$ is smooth in x and y. Moreover, it is known that the Fenchel conjugate of a strongly convex function is smooth. Hence, the second formulation is a minimax optimization problem with a smooth objective.

2.4 Distributionally Robust Optimization

Stochastic optimization problems have the following form:

$$\min_{x} \quad \mathbb{E}_{\xi \sim \mathcal{P}} \left[\ell(x, \xi) \right]$$

where

- $\ell(x,\xi)$ is the loss under decision x and data ξ ,
- \mathcal{P} is the (unknown) distribution of data ξ .

A common practice is to estimate the distribution \mathcal{P} based on data samples. Given n data points ξ^1, \ldots, ξ^n , we take

$$\mathcal{P}_n := \frac{1}{n} \sum_{i=1}^n \delta_{\xi^i}$$

where δ_{ξ} is the **Dirac distribution** of ξ where the probability mass of 1 is given to ξ . Here, we call \mathcal{P}_n an empirical distribution. **Empirical Risk Minimization (ERM)** approximates the stochastic optimization problem by replacing the true distribution \mathcal{P} with the empirical distribution:

$$\min_{x} \quad \mathbb{E}_{\xi \sim \mathcal{P}_n} \left[\ell(x,\xi) \right] \quad = \quad \min_{x} \quad \frac{1}{n} \sum_{i=1}^n \ell(x,\xi^i)$$

Although ERM works well in practice in general, there exist some cases in which ERM suffers with poor generalization performances. Under such scenarios, the empirical distribution \mathcal{P}_n perhaps does not approximate the true distribution well.

Inspired by the issue, **Distributionally Robust Optimization (DRO)** considers ambiguity in inferring the true distribution based on the empirical distribution and aims to make a robust decision even under such distributional ambiguity. The way it works is to consider a "family" of distributions around \mathcal{P}_n not just \mathcal{P}_n itself. To be more specific, we consider

$$\mathcal{F}_n = \{ \mathcal{Q} : d(\mathcal{Q}, \mathcal{P}_n) \le \rho \}$$

where

- Q denotes a probability distribution,
- $d(\mathcal{Q}, \mathcal{P}_n)$ is a discrepancy function to measure the discrepancy between \mathcal{Q} and \mathcal{P}_n ,
- ρ is the radius on how much a distribution in the family \mathcal{F}_n can differ from the empirical distribution \mathcal{P}_n .

Here, typical choices for the discrepancy function include

- the Kullback-Leibler (KL) divergence,
- the Wasserstein distance.

For these choices of the discrepancy function, we have statistical guarantees that the true distribution \mathcal{P} belongs to the family \mathcal{F}_n with high probability under a proper choice of the radius ρ . Then we consider

$$\min_{x} \max_{\mathcal{Q} \in \mathcal{P}_n} \quad \mathbb{E}_{\xi \sim \mathcal{Q}} \left[\ell(x, \xi) \right].$$

Here, the inner maximization captures the expected loss under a worst-case distribution from the family \mathcal{F}_n .

3 Saddle Point and Minimax Theorems

We start by proving the following result.

Theorem 16.1. Consider the minimax optimization problem. Then the following statement holds.

$$\min_{x \in X} \max_{y \in Y} \phi(x, y) \ge \max_{y \in Y} \min_{x \in X} \phi(x, y)$$

Proof. Note that for any $(x, y) \in X \times Y$, we have $\phi(x, y) \ge \min_{x \in X} \phi(x, y)$. Taking the maximum of each side over $y \in Y$, we obtain $\max_{y \in Y} \phi(x, y) \ge \max_{y \in Y} \min_{x \in X} \phi(x, y)$. As this inequality holds for every $x \in X$, taking the minimum of the left-hand side over $x \in X$ preserves the inequality. If done so, we deduce that $\min_{x \in X} \max_{y \in Y} \phi(x, y) \ge \max_{y \in Y} \min_{x \in X} \phi(x, y)$, as required. \Box

Let us get back to the constrained optimization problem

minimize
$$f(x)$$

subject to $g_i(x) \le 0$ for $i = 1, ..., m$. (16.2)

Recall that its Lagrangian is given by $\mathcal{L}(x,\lambda)$. Moreover, the Lagrangian dual function is given by

$$q(\lambda) = \min \mathcal{L}(x, \lambda).$$

Then the Lagrangian dual problem is given by

$$\max_{\lambda \ge 0} \quad q(\lambda) = \max_{\lambda \ge 0} \min_{x} \quad \mathcal{L}(x, \lambda).$$

Then Theorem 16.1 states that

$$\min_{x} \max_{\lambda \ge 0} \mathcal{L}(x, \lambda) \ge \max_{\lambda \ge 0} \min_{x} \mathcal{L}(x, \lambda).$$

In fact, we know that if strong duality holds, then the equality holds as follows.

$$\min_{x} \max_{\lambda \ge 0} \mathcal{L}(x, \lambda) = \max_{\lambda \ge 0} \min_{x} \mathcal{L}(x, \lambda).$$

In general, when does such equality hold for a minimax optimization problem? In this section, we provide other sufficient conditions under which the equality holds.

3.1 Saddle Point

We say that a solution $(x^*, y^*) \in X \times Y$ is a saddle point to the problem $\min_{x \in X} \max_{y \in Y} \phi(x, y)$ if

$$\phi(x^*, y) \le \phi(x^*, y^*) \le \phi(x, y^*)$$

for all $(x, y) \in X \times Y$. If (x^*, y^*) is a saddle point, then

$$\phi(x^*, y^*) = \max_{y \in Y} \phi(x^*, y) = \min_{x \in X} \phi(x, y^*).$$

Theorem 16.2. If (x^*, y^*) is a saddle point, then

$$\min_{x \in X} \max_{y \in Y} \phi(x, y) = \phi(x^*, y^*) = \max_{y \in Y} \min_{x \in X} \phi(x, y).$$

Proof. By definition, we obtain

$$\max_{y \in Y} \phi(x^*, y) \le \phi(x^*, y^*) \le \min_{x \in X} \phi(x, y^*).$$

Moreover, this implies that

$$\min_{x \in X} \max_{y \in Y} \phi(x^*, y) \le \phi(x^*, y^*) \le \max_{x \in X} \min_{x \in X} \phi(x, y^*).$$

By Theorem 16.1, it follows that the inequalities must hold with equality.

3.2 Minimax Theorems

We provide two more sufficient conditions. The following theorem is due to John von Neumann.

Theorem 16.3. Assume that the following conditions are satisfied.

- X and Y are closed convex sets, and one of them is bounded.
- $\phi(x, y)$ is convex in x for any fixed y.
- $\phi(x, y)$ is concave in y for any fixed x.

Then $\min_{x \in X} \max_{y \in Y} \phi(x, y) = \max_{y \in Y} \min_{x \in X} \phi(x, y).$

For the zero-sum game, we know that Δ_m and Δ_d are both bounded.

$$\min_{x \in \Delta_d} x \max_{y \in \Delta_m} Ay = \max_{y \in \Delta_m} \min_{x \in \Delta_d} x^\top Ay.$$

We also have the following result.

Theorem 16.4. Assume that the following conditions are satisfied.

- X and Y are closed convex sets,
- $\phi(x, y)$ is strongly convex in x for any fixed y.
- $\phi(x, y)$ is strongly concave in y for any fixed x.

Then $\min_{x \in X} \max_{y \in Y} \phi(x, y) = \max_{y \in Y} \min_{x \in X} \phi(x, y).$

4 Gradient Descent Ascent Algorithm

From the minimax optimization problem $\min_{x \in X} \max_{y \in Y} \phi(x, y)$, we may consider

$$\begin{aligned} \text{Primal}: & \min_{x \in X} \left\{ \overline{\phi}(x) := \max_{y \in Y} \phi(x, y) \right\} \\ \text{Dual}: & \max_{y \in Y} \left\{ \underline{\phi}(y) := \min_{x \in X} \phi(x, y) \right\}. \end{aligned}$$

For any $(\bar{x}, \bar{y}) \in X \times Y$, Theorem 16.1 implies that

$$\overline{\phi}(\overline{x}) = \max_{y \in Y} \phi(\overline{x}, y) \ge \min_{x \in X} \phi(x, \overline{y}) = \underline{\phi}(\overline{y}).$$

We say that a point $(\bar{x}, \bar{y}) \in X \times Y$ is an ϵ -saddle point if

$$0 \leq \overline{\phi}(\bar{x}) - \underline{\phi}(\bar{y}) = \max_{y \in Y} \phi(\bar{x}, y) - \min_{x \in X} \phi(x, \bar{y}) \leq \epsilon.$$

Note that if $(\bar{x}, \bar{y}) \in X \times Y$ is an ϵ -saddle point, then

$$\overline{\phi}(\bar{x}) - \min_{x \in X} \overline{\phi}(x) \le \epsilon, \\ \max_{y \in Y} \underline{\phi}(y) - \underline{\phi}(\bar{y}) \le \epsilon.$$

Algorithm 1 Gradient Descent Ascent

Initialize $x_1 \in X$ and $y_1 \in Y$. for t = 1, ..., T - 1 do Obtain $g_{x,t} \in \partial_x \phi(x_t, y_t)$ and $g_{y,t} \in \partial_y \phi(x_t, y_t)$. Update $x_{t+1} = \operatorname{proj}_X(x_t - \eta_t g_{x,t})$ and $y_{t+1} = \operatorname{proj}_Y(y_t + \eta_t g_{y,t})$ for some step size $\eta_t > 0$. end for Return x_{T+1} .

Let us consider an algorithm for solving the minimax optimization problem, whose pseudo-code is given as in Algorithm 1. The algorithm is called the **gradient descent ascent** method. Note that at each iteration, we simultaneously update both the primal variables x and the dual variables y. We assumed that $\phi(x, y)$ is convex in x and concave in y. $\partial_x \phi(x, y)$ is the subdifferential of $\phi(x, y)$ for a fixed y, and $\partial_y \phi(x, y)$ is the superdifferential of $\phi(x, y)$ for a fixed x.

Theorem 16.5. Let \bar{x}_T and \bar{y}_T be defined as

$$\bar{x}_T = \left(\sum_{t=1}^T \eta_t\right)^{-1} \sum_{t=1}^T \eta_t x_t, \quad \bar{y}_T = \left(\sum_{t=1}^T \eta_t\right)^{-1} \sum_{t=1}^T \eta_t y_t.$$

Then for any $(x, y) \in X \times Y$,

$$\phi(\bar{x}_T, y) - \phi(x, \bar{y}_T) \le \frac{1}{2\sum_{t=1}^T \eta_t} \left(\|(x_1, y_1) - (x, y)\|_2^2 + \sum_{t=1}^T \eta_t^2 \|(g_{x,t}, g_{y,t})\|_2^2 \right)$$

Assuming that $||(g_x, g_y)||_2^2 \leq L^2$ for any $g_x \in \partial_x \phi(x, y)$ and $g_y \in \partial_y \phi(x, y)$ and that $||(x_1, y_1) - (x, y)||_2^2 \leq R^2$, we can set $\eta_t = R/(L\sqrt{T})$. Then for any $(x, y) \in X \times Y$,

$$\phi(\bar{x}_T, y) - \phi(x, \bar{y}_T) \le \frac{LR}{\sqrt{T}}$$

In particular,

$$\max_{y \in Y} \phi(\bar{x}_T, y) - \min_{x \in X} \phi(x, \bar{y}_T) \le \frac{LR}{\sqrt{T}}.$$

Then setting $T = O(1/\epsilon^2)$, we know that (\bar{x}_T, \bar{y}_T) is an ϵ -saddle point.