1 Outline

In this lecture, we study training neural networks from the perspective of Lagrangian duality.

2 Neural Networks

Let us consider a neural network with a single hidden layer illustrated as in Figure 15.1. Given the

Figure 15.1: Single hidden layer neural network
predictor variable vector $x \in \mathbb{R}^{d}$, the neural network can model the response variable $y \in \mathbb{R}$ with

$$
\begin{equation*}
\mathbb{E}[y \mid x]=w_{2}^{\top} \sigma\left(W_{1} x\right) \tag{15.1}
\end{equation*}
$$

where

- $W_{1} x$ is the output of the input layer,
- σ is an activation function,
- w_{2} is the weight vector that the hidden layer applies.

Common choices for an activation function include

- sigmoid function: $\sigma(z)=1 /\left(1+e^{-z}\right)$,
- Tanh function: $\sigma(z)=\left(e^{z}-z^{-z}\right) /\left(e^{z}+e^{-z}\right)$,
- ReLU: $\sigma(z)=\max \{0, z\}$.

Note that the output of the input layer $W_{1} x$ is a vector with multiple components, and $\sigma\left(W_{1} x\right)$ applies the activation function on individual components of the vector. Basically, for $z \in \mathbb{R}^{d}$, $\sigma(z)=\left(\sigma\left(z_{1}\right), \ldots, \sigma\left(z_{d}\right)\right)$.

2.1 Multiple Hidden Layers

We may generalize the single hidden layer neural network to a neural network with multiple hidden layers. Moreover, we consider the scenario where the response variable $y \in \mathbb{R}^{d_{y}}$ is vector-valued. The predictor variable is given by $x \in \mathbb{R}^{d_{x}}$. Then we use a neural network $f_{\theta}: \mathbb{R}^{d_{x}} \rightarrow \mathbb{R}^{d_{y}}$ given as

Figure 15.2: Fully connected feedforward neural network
follows.

$$
\begin{equation*}
f_{\theta}(x)=W^{L} \sigma\left(W^{L-1}\left(\cdots \sigma\left(W^{2} \sigma\left(W^{1} x\right)\right) \cdots\right)\right) \tag{15.2}
\end{equation*}
$$

where

- $W_{1} x$ is the output of the input layer,
- there are $L-1$ hidden layers,
- the i th hidden layer receives $\left.W^{i}\left(\cdots \sigma\left(W^{2} \sigma\left(W^{1} x\right)\right) \cdots\right)\right)$ and outputs $W^{i+1} \sigma\left(W^{i}(\cdots)\right)$ for $i \in[L-1]$,
- θ represents the collection of all parameters $\theta=\left(W^{1}, \ldots, W^{L}\right)$.

Note that the neural network f_{θ} given in (15.2) has a complex composite structure. Another way to represent f_{θ} is to use the following recursion:

$$
\begin{array}{cc}
z^{0}=x, & h^{1}=W^{1} z^{0}, \\
z^{1}=\sigma\left(h^{1}\right), & h^{2}=W^{2} z^{1}, \\
\vdots & \vdots \\
z^{L-1}=\sigma\left(h^{L-1}\right), & h^{L}=W^{L} z^{L-1} .
\end{array}
$$

Here, z^{0} is the input. For $i=1, \ldots, L-1$, the i th hidden layer receives h^{i} and outputs z^{i}. We often call h^{i} pre-activation and z^{i} post-activation. Note that z^{i} is multiplied by W^{i+1} as it moves from the i th layer to the $i+1$ th layer to become $h^{i+1}=W^{i+1} z^{i}$.

The most general setting is to consider bias terms, in which case we get

$$
f_{\theta}(x)=W^{L} \sigma\left(W^{L-1}\left(\cdots \sigma\left(W^{2} \sigma\left(W^{1} x+b^{1}\right)+b^{2}\right) \cdots\right)+b^{L-1}\right)+b^{L}
$$

and

$$
\begin{array}{cl}
z^{0}=x, & h^{1}=W^{1} z^{0}+b^{1} \\
z^{1}=\sigma\left(h^{1}\right), & h^{2}=W^{2} z^{1}+b^{2}, \\
\vdots & \vdots \\
z^{L-1}=\sigma\left(h^{L-1}\right), & h^{L}=W^{L} z^{L-1}+b^{L} .
\end{array}
$$

For a simpler presentation, we omit the bias terms and consider (15.2).
Suppose that we have n data points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$. Then we want to choose the parameter θ so that the predicted outcome $f_{\theta}\left(x_{i}\right)$ is close to y_{i}. For a loss function $\ell: \mathbb{R}^{d_{y}} \times \mathbb{R}^{d_{y}} \rightarrow \mathbb{R}$, we consider

$$
\begin{equation*}
\min _{\theta} \quad F(\theta)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i}, f_{\theta}\left(x_{i}\right)\right) \tag{15.3}
\end{equation*}
$$

For regression, we typically take the squared loss function $\ell(y, \hat{y})=\|y-\hat{y}\|_{2}^{2}$. For binary classification, we take $\ell(y, \hat{y})=\log (1+\exp (-y \hat{y}))$.
To find a parameter θ minimizing the loss function $F(\theta)$ given in (15.3), we may apply gradient descent:

$$
\theta_{t+1}=\theta_{t}-\eta_{t} \nabla_{\theta} F\left(\theta_{t}\right)
$$

Applying stochastic gradient descent, we sample a data point (x, y) and take

$$
\theta_{t+1}=\theta_{t}-\eta_{t} \nabla_{\theta} \ell\left(y, f_{\theta}(x)\right)
$$

Here, let alone the non-convexity of $F(\theta)$ and $\ell\left(y, f_{\theta}(x)\right)$, we need to consider the complex composite structure of the function $\ell\left(y, f_{\theta}(x)\right)$ from multiple layers in the neural network. Backpropagation allows efficient computation of the gradient for training neural networks.

2.2 Connection to Linear Regression

Recall that linear regression is to learn the linear model with coefficient vector $w \in \mathbb{R}^{d}$ such that

$$
y=w^{\top} x
$$

where $x \in \mathbb{R}^{d}$ is the predictor variable and $y \in \mathbb{R}$ is the response variable. Given n data points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$, we consider

$$
\min _{w} \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-w^{\top} x_{i}\right)^{2}
$$

Note that the linear model is equivalent to a neural network with no hidden layer.

2.3 Connection to Matrix Factorization

We discussed the matrix factorization problem where the goal is to approximate an $n \times p$ matrix D by the product of two low rank matrices $U \in \mathbb{R}^{n \times k}$ and $V \in \mathbb{R}^{p \times k}$:

$$
D \simeq U V^{\top}
$$

Recall that the matrix factorization problem can be solved by

$$
\begin{equation*}
\min _{U \in \mathbb{R}^{n \times k}, V \in \mathbb{R}^{p \times k}}\left\|D-U V^{\top}\right\|_{F}^{2} . \tag{15.4}
\end{equation*}
$$

For $i \in[n]$, let $y_{i} \in \mathbb{R}^{p}$ denote the i th row of D, and let $x_{i} \in \mathbb{R}^{n}$ denote the i th unit vector in \mathbb{R}^{n}. Then it follows that

$$
\left\|D-U V^{\top}\right\|_{F}^{2}=\sum_{i=1}^{n}\left\|y_{i}-V U^{\top} x_{i}\right\|_{2}^{2} .
$$

Then (15.4) is equivalent to

$$
\min _{W_{1} \in \mathbb{R}^{k \times n}, W_{2} \in \mathbb{R}^{p \times k}} \sum_{i=1}^{n}\left\|y_{i}-W_{2} W_{1} x_{i}\right\|_{2}^{2} .
$$

Hence, the matrix factorization problem reduces to a neural network with a single hidden layer and without an activation function.

3 Backpropagation and Lagrangian Duality

Let us consider the following composite optimization problem.

$$
\min _{\theta} \quad f(g(\theta)) .
$$

Here, the problem can be rewritten as

$$
\begin{aligned}
\min & f(z) \\
\text { s.t. } & z=g(\theta) .
\end{aligned}
$$

Taking the Lagrangian, we get

$$
\mathcal{L}(\theta, z, \mu)=f(z)-\mu(z-g(\theta)) .
$$

Applying KKT conditions,

$$
\begin{aligned}
& 0=\nabla_{\theta} \mathcal{L}(\theta, z, \mu)=\mu g^{\prime}(\theta) \\
& 0=\nabla_{z} \mathcal{L}(\theta, z, \mu)=f^{\prime}(z)-\mu \\
& 0=\nabla_{\mu} \mathcal{L}(\theta, z, \mu)=-z+g(\theta)
\end{aligned}
$$

This implies that

$$
0=\mu g^{\prime}(\theta)=f^{\prime}(z) g^{\prime}(\theta)=f^{\prime}(g(\theta)) g^{\prime}(\theta),
$$

which basically is the chain rule. Hence, the dual formulation does implement backpropagation! In general, let us consider a composite function given by the following procedure. We consider what we call a computation graph G where

Figure 15.3: Computation graph

- $G=(N, A)$ is a directed acyclic graph,
- $|N|=m$,
- $\alpha(i)=\{k \in N:(k, i) \in A\}$ denotes the set of ancestors of i for $i \in N$,
- $\beta(i)=\{j \in N:(i, j) \in A\}$ denotes the set of successors of i for $i \in N$.

For each node $i \in N$, we declare a variable z_{i}. Here,

- z_{1}, \ldots, z_{d} are the input variables, i.e., $\theta=\left(z_{1}, \ldots, z_{d}\right)$,
- z_{d+1}, \ldots, z_{m-1} are the intermediate variables,
- z_{m} is the output,
- $z_{\alpha(i)}$ collects the variables z_{k} for $k \in \alpha(i)$,
- the output of node $i \in N$ is given by $f_{i}\left(z_{\alpha(i)}\right)$.

Here, the problem can be reformulated as

$$
\begin{aligned}
\min & z_{m} \\
\text { s.t. } & z_{i}=f_{i}\left(z_{\alpha(i)}\right) \quad \text { for } i=d+1, \ldots, m
\end{aligned}
$$

The Lagrangian of this formulation is given by

$$
\mathcal{L}(z, \mu)=z_{m}-\sum_{i=d+1}^{m} \mu_{i}\left(z_{i}-f_{i}\left(z_{\alpha(i)}\right)\right)
$$

Here, we apply KKT conditions.

1. Setting $\nabla_{\mu_{i}}(\mathcal{L})=0$, we obtain $z_{i}=f_{i}\left(z_{\alpha(i)}\right)$. This is basically the forward pass.
2. Setting $\nabla_{z_{m}} \mathcal{L}=0$, we deduce

$$
\nabla_{z_{m}} \mathcal{L}=1-\mu_{m}=0
$$

which implies $\mu_{m}=1$.
3. Setting $\nabla_{z_{j}} \mathcal{L}=0$ for $j<m$, we deduce

$$
\begin{aligned}
0 & =\nabla_{z_{j}} \mathcal{L} \\
& =-\mu_{j}+\sum_{i \in \beta(j)} \mu_{i} \frac{\partial f_{i}\left(z_{\alpha(i)}\right)}{\partial z_{j}},
\end{aligned}
$$

which implies

$$
\mu_{j}=\sum_{i \in \beta(j)} \mu_{i} \frac{\partial f_{i}\left(z_{\alpha(i)}\right)}{\partial z_{j}}
$$

Here, this is the backward pass.
Theorem 15.1. For $d+1 \leq j \leq m$, we have

$$
\mu_{j}=\frac{\partial f(\theta)}{\partial z_{j}} .
$$

Proof. We apply induction on j. For $j=m$, note that $f(\theta)=f_{m}\left(z_{\alpha(m)}\right)=z_{m}$. Since $1=\mu_{m}$, we satisfy

$$
\frac{\partial f(\theta)}{\partial z_{m}}=\frac{\partial z_{m}}{\partial z_{m}}=1=\mu_{m}
$$

For $j<m$, we have

$$
\begin{aligned}
\lambda_{j} & =\sum_{i \in \beta(j)} \mu_{i} \frac{\partial f_{i}\left(z_{\alpha(i)}\right)}{\partial z_{j}} \\
& =\sum_{i \in \beta(j)} \frac{\partial f(\theta)}{\partial z_{i}} \frac{\partial f_{i}\left(z_{\alpha(i)}\right)}{\partial z_{j}} \\
& =\frac{\partial f(\theta)}{\partial z_{j}}
\end{aligned}
$$

where the second equality holds due to the induction hypothesis.

