
DS 801: Advanced Optimization for Data Science KAIST, Fall 2024
Lecture #15: Training Neural Networks and Lagrangian Duality April 24, 2024
Lecturer: Dabeen Lee

1 Outline

In this lecture, we study training neural networks from the perspective of Lagrangian duality.

2 Neural Networks

Let us consider a neural network with a single hidden layer illustrated as in Figure 15.1. Given the

Figure 15.1: Single hidden layer neural network

predictor variable vector x ∈ Rd, the neural network can model the response variable y ∈ R with

E [y | x] = w⊤
2 σ(W1x) (15.1)

where

• W1x is the output of the input layer,

• σ is an activation function,

• w2 is the weight vector that the hidden layer applies.

Common choices for an activation function include

• sigmoid function: σ(z) = 1/(1 + e−z),

• Tanh function: σ(z) = (ez − z−z)/(ez + e−z),

• ReLU: σ(z) = max{0, z}.

Note that the output of the input layer W1x is a vector with multiple components, and σ(W1x)
applies the activation function on individual components of the vector. Basically, for z ∈ Rd,
σ(z) = (σ(z1), . . . , σ(zd)).

1

2.1 Multiple Hidden Layers

We may generalize the single hidden layer neural network to a neural network with multiple hidden
layers. Moreover, we consider the scenario where the response variable y ∈ Rdy is vector-valued.
The predictor variable is given by x ∈ Rdx . Then we use a neural network fθ : Rdx → Rdy given as

Figure 15.2: Fully connected feedforward neural network

follows.
fθ(x) = WLσ(WL−1(· · ·σ(W 2σ(W 1x)) · · ·)) (15.2)

where

• W1x is the output of the input layer,

• there are L− 1 hidden layers,

• the ith hidden layer receives W i(· · ·σ(W 2σ(W 1x)) · · ·)) and outputs W i+1σ(W i(· · ·)) for
i ∈ [L− 1],

• θ represents the collection of all parameters θ = (W 1, . . . ,WL).

Note that the neural network fθ given in (15.2) has a complex composite structure. Another way
to represent fθ is to use the following recursion:

z0 = x, h1 = W 1z0,

z1 = σ(h1), h2 = W 2z1,

...
...

zL−1 = σ(hL−1), hL = WLzL−1.

Here, z0 is the input. For i = 1, . . . , L − 1, the ith hidden layer receives hi and outputs zi. We
often call hi pre-activation and zi post-activation. Note that zi is multiplied by W i+1 as it
moves from the ith layer to the i+ 1th layer to become hi+1 = W i+1zi.

2

The most general setting is to consider bias terms, in which case we get

fθ(x) = WLσ(WL−1(· · ·σ(W 2σ(W 1x+ b1) + b2) · · ·) + bL−1) + bL

and

z0 = x, h1 = W 1z0 + b1,

z1 = σ(h1), h2 = W 2z1 + b2,

...
...

zL−1 = σ(hL−1), hL = WLzL−1 + bL.

For a simpler presentation, we omit the bias terms and consider (15.2).

Suppose that we have n data points (x1, y1), . . . , (xn, yn). Then we want to choose the parameter
θ so that the predicted outcome fθ(xi) is close to yi. For a loss function ℓ : Rdy × Rdy → R, we
consider

min
θ

F (θ) =
1

n

n∑
i=1

ℓ(yi, fθ(xi)). (15.3)

For regression, we typically take the squared loss function ℓ(y, ŷ) = ∥y− ŷ∥22. For binary classifica-
tion, we take ℓ(y, ŷ) = log(1 + exp(−yŷ)).

To find a parameter θ minimizing the loss function F (θ) given in (15.3), we may apply gradient
descent:

θt+1 = θt − ηt∇θF (θt).

Applying stochastic gradient descent, we sample a data point (x, y) and take

θt+1 = θt − ηt∇θℓ(y, fθ(x)).

Here, let alone the non-convexity of F (θ) and ℓ(y, fθ(x)), we need to consider the complex composite
structure of the function ℓ(y, fθ(x)) from multiple layers in the neural network. Backpropagation
allows efficient computation of the gradient for training neural networks.

2.2 Connection to Linear Regression

Recall that linear regression is to learn the linear model with coefficient vector w ∈ Rd such that

y = w⊤x

where x ∈ Rd is the predictor variable and y ∈ R is the response variable. Given n data points
(x1, y1), . . . , (xn, yn), we consider

min
w

1

n

n∑
i=1

(yi − w⊤xi)
2.

Note that the linear model is equivalent to a neural network with no hidden layer.

3

2.3 Connection to Matrix Factorization

We discussed the matrix factorization problem where the goal is to approximate an n × p matrix
D by the product of two low rank matrices U ∈ Rn×k and V ∈ Rp×k:

D ≃ UV ⊤.

Recall that the matrix factorization problem can be solved by

min
U∈Rn×k, V ∈Rp×k

∥∥∥D − UV ⊤
∥∥∥2
F
. (15.4)

For i ∈ [n], let yi ∈ Rp denote the ith row of D, and let xi ∈ Rn denote the ith unit vector in Rn.
Then it follows that ∥∥∥D − UV ⊤

∥∥∥2
F
=

n∑
i=1

∥∥∥yi − V U⊤xi

∥∥∥2
2
.

Then (15.4) is equivalent to

min
W1∈Rk×n, W2∈Rp×k

n∑
i=1

∥yi −W2W1xi∥22 .

Hence, the matrix factorization problem reduces to a neural network with a single hidden layer and
without an activation function.

3 Backpropagation and Lagrangian Duality

Let us consider the following composite optimization problem.

min
θ

f(g(θ)).

Here, the problem can be rewritten as

min f(z)

s.t. z = g(θ).

Taking the Lagrangian, we get

L(θ, z, µ) = f(z)− µ(z − g(θ)).

Applying KKT conditions,

0 = ∇θL(θ, z, µ) = µg′(θ)

0 = ∇zL(θ, z, µ) = f ′(z)− µ

0 = ∇µL(θ, z, µ) = −z + g(θ).

This implies that
0 = µg′(θ) = f ′(z)g′(θ) = f ′(g(θ))g′(θ),

which basically is the chain rule. Hence, the dual formulation does implement backpropagation!

In general, let us consider a composite function given by the following procedure. We consider what
we call a computation graph G where

4

Figure 15.3: Computation graph

• G = (N,A) is a directed acyclic graph,

• |N | = m,

• α(i) = {k ∈ N : (k, i) ∈ A} denotes the set of ancestors of i for i ∈ N ,

• β(i) = {j ∈ N : (i, j) ∈ A} denotes the set of successors of i for i ∈ N .

For each node i ∈ N , we declare a variable zi. Here,

• z1, . . . , zd are the input variables, i.e., θ = (z1, . . . , zd),

• zd+1, . . . , zm−1 are the intermediate variables,

• zm is the output,

• zα(i) collects the variables zk for k ∈ α(i),

• the output of node i ∈ N is given by fi(zα(i)).

Here, the problem can be reformulated as

min zm

s.t. zi = fi(zα(i)) for i = d+ 1, . . . ,m.

The Lagrangian of this formulation is given by

L(z, µ) = zm −
m∑

i=d+1

µi(zi − fi(zα(i))).

Here, we apply KKT conditions.

1. Setting ∇µi(L) = 0, we obtain zi = fi(zα(i)). This is basically the forward pass.

2. Setting ∇zmL = 0, we deduce
∇zmL = 1− µm = 0,

which implies µm = 1.

5

3. Setting ∇zjL = 0 for j < m, we deduce

0 = ∇zjL

= −µj +
∑

i∈β(j)

µi

∂fi(zα(i))

∂zj
,

which implies

µj =
∑

i∈β(j)

µi

∂fi(zα(i))

∂zj
.

Here, this is the backward pass.

Theorem 15.1. For d+ 1 ≤ j ≤ m, we have

µj =
∂f(θ)

∂zj
.

Proof. We apply induction on j. For j = m, note that f(θ) = fm(zα(m)) = zm. Since 1 = µm, we
satisfy

∂f(θ)

∂zm
=

∂zm
∂zm

= 1 = µm.

For j < m, we have

λj =
∑

i∈β(j)

µi

∂fi(zα(i))

∂zj

=
∑

i∈β(j)

∂f(θ)

∂zi

∂fi(zα(i))

∂zj

=
∂f(θ)

∂zj

where the second equality holds due to the induction hypothesis.

6

	Outline
	Neural Networks
	Multiple Hidden Layers
	Connection to Linear Regression
	Connection to Matrix Factorization

	Backpropagation and Lagrangian Duality

