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1 Outline

In this lecture, we study

• Lagrangian duality,

• dual algorithms.

2 Lagrangian Duality

We consider problems of the following structure.

minimize f(x)

subject to gi(x) ≤ 0 for i = 1, . . . ,m

hj(x) = 0 for j = 1, . . . , ℓ.

(14.1)

We consider the most general setting for which we do not impose the condition that the objective
and constraint functions are convex. We may define vector-valued functions g : Rd → Rm and
h : Rd → Rℓ such that

• g(x) = (g1(x), . . . , gm(x))⊤,

• h(x) = (h1(x), . . . , hℓ(x))
⊤.

Then (14.1) can be written as

minimize f(x)

subject to g(x) ≤ 0

h(x) = 0.

(14.2)

2.1 Lagrangian Dual Problem

The Lagrangian function of (14.1) is given by

L(x, λ, µ) = f(x) + λ⊤g(x) + µ⊤h(x)

= f(x) +

m∑
i=1

λigi(x) +

ℓ∑
j=1

µjhj(x).

When the objective function f is convex, constraint functions g1, . . . , gm are convex, constraint
functions h1, . . . , hℓ are affine, and the multiplier λ ≥ 0, the Lagrangian function is convex in x for
any fixed λ and µ. Moreover, the Lagrangian function is affine in λ and µ for any fixed x.

The Lagrangian dual function of (14.1) is

q(λ, µ) = inf
x
L(x, λ, µ) = inf

x

{
f(x) + λ⊤g(x) + µ⊤h(x)

}
.
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Notice that the Lagrangian dual function is concave in (λ, µ), regardless of f , g1, . . . , gm, and
h1, . . . , hℓ. This is because L(x, λ, µ) is affine in λ and µ for any fixed x, and q(λ, µ) is a point-wise
minimum of affine functions.

Proposition 14.1. Let x be a feasible solution to (14.1), and λ ≥ 0. Then

f(x) ≥ q(λ, µ).

Proof. Since x is feasible, gi(x) ≤ 0 for i = 1, . . . ,m and hj(x) = 0 for j = 1, . . . , ℓ. Then for any
λ ≥ 0, we have

m∑
i=1

λigi(x) +

ℓ∑
j=1

µjhj(x) ≤ 0.

This implies that
f(x) ≥ L(x, λ, µ).

Note that
q(λ, µ) = inf

x
L(x, λ, µ) ≤ L(x, λ, µ).

Therefore, f(x) ≥ q(λ, µ).

By Proposition 14.1, if (14.1) is unbounded below, the Lagrangian dual function q(λ, µ) = −∞ for
any λ ≥ 0.

With the Lagrangian dual function, we can provide a lower bound on the problem (14.1). The
Lagrangian dual problem is defined as

maximize q(λ, µ)

subject to λ ≥ 0.
(14.3)

We often call (14.1) as primal and (14.3) as the associated (Lagrangian) dual. The following result
states that the optimal value of the primal is lower bounded by the optimal value of the dual.

Theorem 14.2 (Weak duality). Consider the problem (14.1) and the associated Lagrangian dual
problem (14.3). Then the following statement holds.

min
x∈C

f(x) ≥ max
λ≥0

q(λ, µ)

where C = {x : gi(x) ≤ 0 for i = 1, . . . ,m, hj(x) = 0 for j = 1, . . . , ℓ}.

Proof. By proposition 14.1, we know that f(x) ≥ q(λ, µ) for any x ∈ C and λ ≥ 0. Then taking
the minimum of f(x) over x ∈ C, it follows that minx∈C f(x) ≥ q(λ, µ). Then taking the maximum
of q(λ, µ) over λ ≥ 0, we obtain the desired inequality.

Theorem 14.2 holds regardless of whether the objective and constraint functions are convex or not.
Then our next question is whether the equality holds. To answer this, we define the notion of
Slater’s condition.

Definition 14.3 (Slater’s condition). Suppose that g1, . . . , gk are affine and gk+1, . . . , gm are convex
functions that are not affine. Then we say that the problem (14.1) satisfies Slater’s condition if
there exists a solution x̄ such that

gi(x̄) ≤ 0 for i = 1, . . . , k, gi(x̄) < 0 for i = k + 1, . . . ,m, hj(x̄) = 0 for j = 1, . . . , ℓ.
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If we assume that the objective f is convex and the constraint functions satisfy Slater’s condition,
then the inequality given in Theorem 14.2 holds with equality.

Theorem 14.4 (Strong duality). Consider the primal problem (14.1) and the associated Lagrangian
dual problem (14.3). Assume that the objective function f and the constraint functions g1, . . . , gm
are convex, and h1, . . . , hℓ are affine. If the primal problem (14.1) has a finite optimal value and
Slater’s condition, given in Definition 14.3, is satisfied, then there exist λ∗ ≥ 0 and µ∗ such that

min
x∈C

f(x) = q(λ∗, µ∗) = max
λ≥0

q(λ, µ)

where C = {x : gi(x) ≤ 0 for i = 1, . . . ,m, hj(x) = 0 for j = 1, . . . , ℓ}.

2.2 Karush-Kuhn-Tucker (KKT) Conditions

Remember that x∗ is an optimal solution to

min
x∈C

f(x)

where C is a convex set and f is differentiable if and only if

∇f(x∗)⊤(x− x∗) ≥ 0 ∀x ∈ C.

However, the structure of C may be arbitrary, which makes the condition difficult to verify. In this
section, we present another way of verifying optimality. Namely, Karush-Kuhn-Tucker conditions,
often referred to as KKT conditions.

We consider problems of the following structure.

minimize f(x)

subject to gi(x) ≤ 0 for i = 1, . . . ,m

hj(x) = 0 for j = 1, . . . , ℓ

(14.4)

where

• f is convex,

• g1, . . . , gm are convex,

• h1, . . . , hℓ are affine.

Theorem 14.5 (KKT conditions for convex constrained problems). The convex programming prob-
lem as in (14.4) satisfies the following.

1. (Necessity) Assume that Slater’s condition is satisfied. If x∗ is a feasible optimal solution
to (14.4), then there exist λ∗ ∈ Rm

+ and µ∗ ∈ Rℓ such that

∇f(x∗) +

m∑
i=1

λ∗
i∇gi(x

∗) +

ℓ∑
j=1

µ∗
j∇hj(x

∗) = 0 & λ∗
i gi(x

∗) = 0 for all i = 1, . . . ,m. (⋆⋆)

2. (Sufficiency) If x∗ is a feasible solution to (14.4) and there exist λ∗ ∈ Rm
+ and µ∗ ∈ Rℓ

satisfying (⋆⋆), then x∗ is an optimal solution to (14.4).
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2.3 KKT Conditions for Linear Constraints

We consider problems of the following structure.

minimize f(x)

subject to Ax ≤ b

Cx = d

(14.5)

where

• A ∈ Rm×d and b ∈ Rm,

• C ∈ Rℓ×d and d ∈ Rℓ.

Theorem 14.6 (KKT conditions for linearly constrained problems). The linearly constrained prob-
lem as in (14.5) satisfies the following.

1. (Necessity) If x∗ is a feasible solution to (14.5) and f(x∗) is a local minimum, then there exist
λ∗ ∈ Rm

+ and µ∗ ∈ Rℓ such that

∇f(x∗)⊤ + λ∗⊤A+ µ∗⊤C = 0 & λ∗⊤(Ax− b) = 0. (⋆)

2. (Sufficiency) If f is convex, x∗ is a feasible solution to (14.5), and there exist λ∗ ∈ Rm
+ and

µ∗ ∈ Rℓ satisfying (⋆), then x∗ is an optimal solution to (14.5).

3 Dual Methods

We consider

minimize f(x)

subject to Ax = b.

For a dual multiplier µ, the Lagrangian is given by

L(x, µ) = f(x) + µ⊤(Ax− b).

Here, we may interprete the Lagrangian as a penalized objective function.

3.1 Dual Subgradient Method

The first algorithm for the constrained minimization problem is what we call the dual subgradient
method. The idea behind the dual subgradient method is to adapt the dual multiplier µ which
controls the level of penalization. Namely, we start with an initial µ1 and update µt for t ≥ 1.
Given µt, we apply

µt+1 = µt − ηtgt.

Here, what is gt? The dual subgradient method proceeds with

xt ∈ argmin
x

f(x) + µ⊤
t (Ax− b),

µt+1 = µt + ηt(Axt − b).
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Algorithm 1 Subgradient method for the dual problem

Initialize µ1.
for t = 1, . . . , T − 1 do

Obtain xt ∈ argminx f(x) + µ⊤
t (Ax− b),

Update µt+1 = µt + ηt(Axt − b) for a step size ηt > 0.
end for

Here, f(x) + µ⊤
t (Ax − b) is the Lagrangian function L(x, µ) at µ = µt. At each iteration t with a

given dual multiplier µt, we find a minimizer of the Lagrangian function L(x, µt). Then we use the
corresponding dual subgradient Axt − b to obtain a new multiplier µt+1.

At each iteration, we find a minimizer of the Lagrangian function L(x, µt), which gives rise to an
unconstrained optimization problem. Hence, the dual approach is useful when there is a complex
system of constraints.

3.2 Augmented Lagrangian Method

The next algorithm for the constrained minimization problem is as follows.

xt ∈ argmin
x

{
f(x) + µ⊤

t (Ax− b) +
η

2
∥Ax− b∥22

}
µt+1 = µt + η(Axt − b).

This is precisely, the augmented Lagrangian method (ALM).

Algorithm 2 Augmented Lagrangian method

Initialize µ1.
for t = 1, . . . , T do

Find xt ∈ argminx
{
f(x) + µ⊤

t (Ax− b) + η
2∥Ax− b∥22

}
.

Update µt+1 = µt + η(Axt − b).
end for

Notice that the augmented Lagrangian method is the dual gradient method applied to the following
equivalent formulation of the primal problem.

minimize f(x) +
η

2
∥Ax− b∥22

subject to Ax = b.

4 Composite Minimization

We consider
minimize f(x) + g(Ax),

which is equivalent to

minimize f(x) + g(y)

subject to Ax = y.
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Moreover, it can be rewritten as

minimize f(x) + g(y)

subject to Ax− y = 0.

Here, the Lagrangian function is given by

L(x, y, µ) = f(x) + g(y) + µ⊤(Ax− y).

Then we may apply the dual subgradient method developed for separable objective functions.
Basically, at each iteration, we minimize the Lagrangian function at µ = µt. The dual subgradient
method works with the update rule

xt ∈ argmin
x

f(x) + µ⊤
t Ax,

yt ∈ argmin
y

g(y)− µ⊤
t y,

µt+1 = µt + ηt(Axt − yt)

for some step size ηt > 0.

Instead, the augmented Lagrangian method considers the augmented Lagrangian function given by

f(x) + g(y) + µ⊤
t (Ax− y) +

η

2
∥Ax− y∥22.

Here, µt changes over iterations while η remains constant. ALM works with the update rule

(xt, yt) ∈ argmin
(x,y)

f(x) + g(y) + µ⊤
t (Ax− y) +

η

2
∥Ax− y∥22,

µt+1 = µt + η(Axt − yt).

Lastly, we discuss the alternating direction method of multipliers (ADMM). The algorithm works
with the following update rule.

xt ∈ argmin
x

{
f(x) + g(yt−1) + µ⊤

t (Ax− yt−1) +
η

2
∥Ax− yt−1∥22

}
,

yt ∈ argmin
y

{
f(xt) + g(y) + µ⊤

t (Axt − y) +
η

2
∥Axt − y∥22

}
,

µt+1 = µt + η(Axt − yt).

Algorithm 3 Alternating direction method of multipliers

Initialize µ1 and y0.
for t = 1, . . . , T − 1 do

Obtain xt ∈ argminx
{
f(x) + g(yt−1) + µ⊤

t (Ax− yt−1) +
η
2∥Ax− yt−1∥22

}
,

Obtain yt ∈ argminy
{
f(xt) + g(y) + µ⊤

t (Axt − y) + η
2∥Axt − y∥22

}
,

Update µt+1 = µt + η(Axt − yt).
end for
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