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1 Outline

In this lecture, we study

• the cubic regularization method,

• perturbed gradient descent,

• problems where a second-order stationary point is sufficient.

2 More Algorithms for Finding Second-Order Stationary Points

Recall that the Hessian of f is γ-Lipshitz continuous if

‖∇2f(x)−∇2f(y)‖2 ≤ γ‖x− y‖2

where ‖∇2f(x)−∇2f(y)‖2 denotes the spectral norm of ∇2f(x)−∇2f(y) and the spectral norm
of a matrix is its largest singular value. Remember that we defined an (ε, δ)-SOSP as a point x
such that

‖∇f(x)‖2 ≤ ε and ∇2f(x) � −δI.

We learned an algorithm for finding an (ε, δ)-SOSP after a bounded number of iterations for a
funcion f whose Hessian is γ-Lipschitz continuous. The algorithm applies gradient descent when
the gradient norm is high, and if the Hessian has a sufficiently negative eigenvalue, then we take
a descent step toward the associated eigenvector. The algorithm works well in practice, but as
the algorithm relies on the power method, it sometimes suffers from noise accumulation. In this
section, we provide two more algorithms for computing second-order stationary points.

2.1 Cubic Regularization

In this section, we discuss an algorithm referred to as the cubic regularization method due to
Nesterov and Polyak [NP06]. Given a funcion f whose Hessian is γ-Lipschitz continuous, we define
an ε-SOSP as a point x such that

‖∇f(x)‖2 ≤ ε and ∇2f(x) � −√γεI.

By definition, an ε-SOSP is an (ε,
√
γε)-SOSP.

Theorem 13.1. Let f : Rd → R be a function whose Hessian is γ-Lipschitz continuous. Then the
cubic regularization method given by Algorithm 1 finds an ε-SOSP after at most

√
γ(f(x1)− f(x∗))

ε1.5

iterations.
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Algorithm 1 Cubic Regularization

Initialize x1 ∈ Rd

for t = 1, . . . , T do
Take

xt+1 ∈ argmin
x∈Rd

{
∇f(xt)

>(x− xt) +
1

2
(x− xt)>∇2f(xt)(x− xt) +

γ

6
‖x− xt‖32

}
.

end for

2.2 Perturbed Gradient Descent

So far, we have discussed two algorithms for computing an approximately second-order stationary
points. Both algorithms require second-order information from the Hessian, and as a resuit, they
are usually more time-consuming than first-order methods. In fact, there exists a variant of gradient
descent that helps to escape from saddle points. The algorithm is due to Jin et al. [JGN+17]. The
main idea is to add noise if gradient descent ends up with a stationary point. For this reason,
the algorithm is referred to as perturbed gradient descent. Let us provide a description of the
algorithm. Algorithm 2 perturbs the current point if its gradient norm is sufficiently small. Here,

Algorithm 2 Perturbed Gradient Descent

Initialize x1 ∈ Rd

for t = 1, . . . , T do
if ‖∇f(xt)‖2 ≤ ε and no perturbation has been made for the last τ iterations then

Perturb the current point: xt ← xt + εt where εt ∼ N (0, σ2I) for some σ > 0
else

Apply gradient descent: xt+1 = xt − η∇f(xt).
end if

end for

perturbation replaces the step of identifying a negative eigenvalue of the Hessian. [JGN+17] proved
that Algorithm 2 finds an ε-SOSP with high probability.

Theorem 13.2. Let f : Rd → R be β-smooth function whose Hessian is γ-Lipschitz continuous.
Then Algorithm 2 with η = 1/β and properly choosing parameters τ and σ finds an ε-SOSP after

Õ

(
β(f(x1)− f(x∗))

ε2

)
iterations with high probability.

3 Applications where a SOSP is Sufficient

In the previous section, we explained that for any ε > 0, we can find an ε-SOSP x that satisfies

‖∇f(x)‖2 ≤ ε and ∇2f(x) � −√γεI.

We say that a point y is a strict saddle point if

‖∇f(y)‖2 = 0 and ∇2f(y) 6� 0.
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Recall that we may have a saddle point with a positive semidefinite Hessian although a saddle point
is a local minimum if its Hessian is positive definite. Hence, applying an algorithm for finding an
ε-SOSP for a sufficiently small ε, we may avoid strict saddle points.

In this section, we present some applications where a second-order stationary point is a global
minimum. To be more precise, we will cover some application settings that have the following two
conditions.

1. Every saddle points is strict, which means that there is no saddle point at which the Hessian
is positive semidefinite.

2. Every local minimum is a global minimum.

The first condition guarantees that a second-order stationary point is a local minimum. Then it
follows from the second condition that a second-order stationary point is a global minimum.

3.1 Computing the Top Eigenvector

Let A ∈ Rd×d be a positive semidefinite matrix with eigvenvalues

λ1 > λ2 > · · · > λd ≥ 0

and the associated eigvenvectors v1, v2, . . . , vd. Recall that

A1 ∈ argminX∈Rd×d {‖A−X‖F : rank(X) ≤ 1}

where A1 = λ1v1v
>
1 . This implies that

x =
√
λ1v1 and x = −

√
λ1v1

are minimizers of

min
x∈Rd

1

4

∥∥∥A− xx>∥∥∥2
F
.

In fact, we may argue that no other point is a minimizer. Let f(x) denote the objective function

f(x) =
1

4

∥∥∥A− xx>∥∥∥2
F

=
1

4

d∑
i=1

(
x2i −Aii

)2
+

1

4

d∑
i=1

d∑
j=1

(xixj −Aij)
2.

Therefore, it follows that
∇f(x) = ‖x‖22 · x−Ax.

Moreover,
∇2f(x) = ‖x‖22 · I + 2xx> −A.

Remark 13.3. If x is a stationary point of f , then

x ∈ {
√
λivi,−

√
λivi}

for some i ∈ {1, . . . , d}. This is because, if ∇f(x) = 0, then we have Ax = ‖x‖22 · x. This implies
that x is a scalar multiple of some eigenvector vi and ‖x‖22 = λi. In this case, we have x =

√
λivi

or x = −
√
λivi.
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Nevertheless, we know that ±
√
λivi are not minimizers of f although they are stationary points.

Next we will argue that ±
√
λivi for i ≥ 2 are not second-order stationary points.

Remark 13.4. Let y ∈ {
√
λivi,−

√
λivi} for some i > 2. Note that

∇2f(y) = λi‖vi‖22 · I + 2λiviv
>
i −A.

Then it follows that

v>1 ∇2f(y)v1 = λi‖vi‖22‖v1‖22 + 2λi(v
>
i v1)

2 − v>1 Av1 = λi − λ1 < 0.

Therefore, y is a strict saddle point and thus is not a second-order stationary point.

3.2 Low-Rank Matrix Factorization

Given a positive semidefinite matrix A ∈ Rd×d with eigvenvalues λ1 > λ2 > · · · > λd ≥ 0 and the
associated eigvenvectors v1, v2, . . . , vd, we consider

min
X∈Rd×k

1

4

∥∥∥A−XX>∥∥∥2
F

for some k ≥ 1. We know that

Ak ∈ argminX∈Rd×d {‖A−X‖F : rank(X) ≤ k}

where Ak = UkΣkU
>
k . Hence,

X = Σ
1/2
k Uk and X = −Σ

1/2
k Uk

are minimizers of the problem. As in the top eigenvector problem we can show that no other matrix
is a minimizer. As before, we can argue that the other stationary points are strict saddle points.
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