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1 Outline

In this lecture, we study

• nonconvex function landscape,

• finding stationary points,

• second-order stationary points.

2 Nonconvex Function Landscape

Recall that a point x ∈ Rd is a local minimum for a function f if there is some δ > 0 such that

f(x) ≤ f(y) for all y ∈ Rd with ‖x− y‖ ≤ δ.

A global minimum of f over Rd is a point x∗ with

f(x∗) ≤ f(y) for all y ∈ Rd.

We learned that for a convex function, a local minimum is a global minimum. However, for a
nonconvex function, we may have local minima that are not a global minimum as depicted in
Figure 12.1.

Figure 12.1: Landscape of a nonconvex function

For a differentiable function f , we say that a point x ∈ Rd is a stationary point if ∇f(x) = 0.
For a convex function, it follows from the optimality condition that a stationary point is a global
minimum. For a nonconvex function, we can argue that a local minimum is a stationary point.
However, there exists a stationary point that is not a local minimum. In Figure 12.1, the function
landscape has a flat region where the gradient is zero that does not correspond to a local minimum.
We refer to such a stationary point as a saddle point. In general, saddle points can form a very
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large flat region, and it is often hard for a basic implementation of gradient descent to escape from
a saddle point.

The following provides necessary conditions for a local minimum.

Proposition 12.1. Let x be a local minimum of a function f : Rd → R over Rd. Then ∇f(x) = 0,
which means that x is a stationary point. Moreover, if f is twice continuously differentiable, then
∇2f(x) � 0.

In fact, the condition that ∇f(x) = 0 and ∇2f(x) � 0 is not sufficient to guarantee that x is a local
minimum. For example, one may consider f(x) = x3 with ∇f(x) = 3x2 and ∇2f(x) = 6x. Then
we have ∇f(0) = 0 and ∇f2(0) = 0, but x = 0 is not a local minimum of f(x) = x3 as depicted in
Figure 12.2. The following proposition provides a sufficient condition for a local minimum.

Figure 12.2: A cubic function f(x) = x3

Proposition 12.2. Suppose that a function f : Rd → R is twice continuously differentiable over
Rd. If ∇f(x) = 0 and ∇2f(x) � 0, then x is a local minimum.

Although a stationary point with a positive definite Hessian is a local minimum, we should note that
there exists a local minimum at which the Hessian is not positive definite but positive semidefinite.

3 Finding Stationary Points

We saw that finding a global minimum of a nonconvex function can take an exponential number
of iterations even if the function is smooth (see Figure 12.3). In a high-dimensional space, finding

Figure 12.3: Hard nonconvex optimization instance

a local minimum can also be difficult. Then as a first step, one may attempt to find a stationary
point. We define an ε-stationary point as a point x ∈ Rd with

‖∇f(x)‖2 ≤ ε.

Next, we argue that gradient descent can find an ε-stationary point for a smooth function.
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Theorem 12.3. Let f : Rd → R be a β-smooth function in the `2-norm. Let xt+1 denote the
solution generated by gradient descent with step size η = 1/β after t iterations. Then for any

t ≥ 2β(f(x1)− f(x∗))

ε2
,

we have ‖∇f(xt+1)‖2 ≤ ε.

Proof. Since f is β-smooth, it follows that

f(xt+1) ≤ f(xt) +∇f(xt)
>(xt+1 − xt) +

β

2
‖xt+1 − xt‖22.

As xt+1 = xt − η∇f(xt), the inequality is equivalent to

f(xt+1) ≤ f(xt)−
1

2β
‖∇f(xt)‖22.

If ‖∇f(xt)‖2 > ε, then

f(xt+1) ≤ f(xt)−
1

2β
ε2.

This means that the number of time steps t with ‖∇f(xt)‖2 > ε is at most

2β(f(x1)− f(x∗))

ε2
.

Therefore, if

t ≥ 2β(f(x1)− f(x∗))

ε2
,

we have ‖∇f(xt+1)‖2 ≤ ε, as required.

In fact, we can also show that stochastic gradient descent finds a ε-stationary point for a smooth
function.

Theorem 12.4. Let f : Rd → R be a β-smooth function in the `2-norm. Let x1, . . . , xT+1 be the
iterates generated by stochastic gradient descent with a constant step size η = 1/

√
T . Assume that

the stochastic gradient gt at time step t satisfies ‖gt‖2 ≤ L. Then

min
{
E
[
‖∇f(xt)‖22

]
: t = 1, . . . , T

}
≤ 1√

T

(
f(x1)− f(x∗) +

βL2

2

)
where x∗ ∈ argminx∈Rd f(x).

Proof. By smoothness of f , we have

f(xt+1)− f(xt) ≤ ∇f(xt)
>(xt+1 − xt) +

β

2
‖xt+1 − xt‖22

= −η∇f(xt)
>gt +

βη2

2
‖gt‖22

≤ −η∇f(xt)
>gt +

βη2L2

2
.

Taking the expectation conditioned on xt, we obtain

E [f(xt+1) | xt]− f(xt) ≤ −η‖∇f(xt)‖22 +
βη2L2

2
.
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This implies that

E
[
‖∇f(xt)‖22

]
≤ 1

η
(E [f(xt)]− E [f(xt+1)]) +

βηL2

2
.

Then it follows that

min
{
E
[
‖∇f(xt)‖22

]
: t = 1, . . . , T

}
≤ 1

T

T∑
t=1

E
[
‖∇f(xt)‖22

]
≤ 1

Tη

(
f(x1)− min

x∈Rd
f(x)

)
+
βηL2

2
,

as required.

4 Second-Order Stationary Points

In the previous section, we looked for an approximate stationary point that has a bounded norm.
Remember that a local minimum not only is a stationary point but also has a positive semidefinite
Hessian. Motivated by this, we consider methods for finding a point that approximately satisfies
the necessary condition for a local minimum.

We say that a point x is an (ε, δ)-SOSP where an SOSP stands for a second-order stationary point
if x satisfies

‖∇f(x)‖2 ≤ ε and ∇2f(x) � −δI.

Here, ∇2f(x) � −δI means that ∇2f(x) + δI � 0 which states that ∇2f(x) + δI is positive
semidefinite. We will show an algorithm that computes an (ε, δ)-SOSP under some smoothness
assumptions. We say that the Hessian of f is γ-Lipshitz continuous if

‖∇2f(x)−∇2f(y)‖2 ≤ γ‖x− y‖2

where ‖∇2f(x)−∇2f(y)‖2 denotes the spectral norm of ∇2f(x)−∇2f(y) and the spectral norm
of a matrix is its largest singular value.

Lemma 12.5. Suppose that f is twice continuously differentiable and γ-Lipshitz continuous, then
for any x, y ∈ Rd,∣∣∣∣f(y)−

(
f(x) +∇f(x)>(y − x) +

1

2
(y − x)>∇2f(x)(y − x)

)∣∣∣∣ ≤ γ

6
‖y − x‖32.

Let f : Rd → R be a β-smooth function whose Hessian is γ-Lipschitz continuous. Then we apply
the following algorithm.

0. Initialize a point x = x1 ∈ Rd.

1. Repeat the following gradient descent update until ‖∇f(x)‖2 ≤ ε:

x← x− 1

β
∇f(x).

2. If ∇2f(x) � −δI, then x is an (ε, δ)-SOSP, so return x.

3. Find a unit vector v such that v>∇2f(x)v < −δ.

4



4. For a step size η > 0, we update x as follows.

x←

{
x+ ηv, if f(x+ ηv) ≤ f(x− ηv)

x− ηv, otherwise.
.

5. Go back to step 1.

Theorem 12.6. Let x1 ∈ Rd denote the initial point, and let x∗ ∈ argminx∈Rd f(x). Then the
above algorithm computes an (ε, δ)-SOSP after at most

2β(f(x1)− f(x∗))

ε2

gradient computations and at most

3γ2(f(x1)− f(x∗))

δ3

Hessian computations.

Proof. Note that we apply gradient descent only if ‖∇f(x)‖2 > ε. Recall that applying the gradient
descent update on x satisfies

f

(
x− 1

β
∇f(x)

)
≤ f(x)− 1

2β
‖∇f(x)‖22.

Hence, each step of applying gradient descent reduces the function value by at least ε2/2β. This
means that the total number of gradient descent updates is at most

2β(f(x1)− f(x∗))

ε2
.

Moreover, note that we apply the Hessian gradient only if ∇2f(x) ≺ −δI, in which case there exists
a unit vector v with v>∇2f(x)v < −δ. Here,

min {f(x+ ηv), f(x− ηv)} =
1

2
(f(x+ ηv) + f(x− ηv))

≤ f(x) +
η2

2
v>∇2f(x)v +

γη3

6
‖v‖32

< f(x)− η2

2
δ +

γη3

6

= f(x)− δ3

3γ2
.

Therefore, one iteration of the Hessian gradient step reduces the function value by at least δ3/3γ2.
Hence, the total number of Hessian gradient descent updates is at most

3γ2(f(x1)− f(x∗))

δ3
,

as required.
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