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1 Outline

In this lecture, we study

• matrix completion via the singular value decomposition,

• matrix completion via the power method,

• matrix completion via projected gradient descent,

• the Frank-Wolfe algorithm,

• matrix completion via the Frank-Wolfe algorithm.

2 Matrix Completion via the Singular Value Decomposition

Let us consider
min

X∈Rn×p
‖D −X‖F subject to rank(X) ≤ k

where

• D is an n× p matrix,

• ‖A‖F denotes the Frobenius norm, i.e., ‖A‖F =
√∑n

i=1

∑p
j=1A

2
ij .

By the definition of the Frobenius norm, the problem is equivalent to

min
X∈Rn×p

1

2

n∑
i=1

p∑
j=1

(Dij −Xij)
2 subject to rank(X) ≤ k.

2.1 Applications

The most common application is matrix compression, where the goal is to provide a lossy com-
pressed version of a given matrix. There are other practical applications, which we elaborate on
below.

Movie Recommendation We discussed movie recommendation as an application where D is
a user-rating matrix for movies. Typically, D is a sparse matrix with a huge number of rows and
a large number of columns. The missing entries are filled with 0. The goal is to infer the values
of the missing entries, thereby predicting the unseen user ratings for movies. As explained before,
the hypothesis is that the true user-rating matrix X ∈ Rn×p is generated by the product of an
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user-feature matrix U ∈ Rn×k and a movie-feature matrix V ∈ Rp×k over k features as follows.

U U U U U
U
U
U X
U
U
U


=



U U
U
U
U

U
U
U


[
U U

V >
U U

U

]
.

Then matrix X has rank at most k.

Localization in Sensor Networks Suppose that there are n sensors whose physical locations
are given by coordinate vectors x1, . . . , xn ∈ R3. Here, these vectors are not given while we have
access to the distance information about some pairs of distinct sensors. Note that the distance
between xi and xj is given by

Dij = ‖xi − xj‖22 = ‖xi‖22 + ‖xj‖22 − 2x>i xj .

Let X be the n× 3 matrix whose rows are x>1 , . . . , x
>
n , y ∈ Rn be the vector whose components are

‖x1‖22, . . . , ‖xn‖22, and let 1 ∈ Rn be the vector of all ones. Then it follows that

D = y1> + 1>y − 2XX>.

As the rank of X is at most 3, the rank of matrix D is at most 5. Basically, we are given only a
subset of the entries of D, from which we want to predict matrix the sensor location matrix X.

2.2 Low-Rank Approximation by the Singular Value Decomposition

Recall that the singular value decomposition (SVD) of a matrix D ∈ Rn×p is given by

D = UΣV >

where

• r = min{n, p},

• U ∈ Rn×r is an n× r matrix with orthonormal columns,

• Σ ∈ Rr×r is a r × r diagonal matrix whose entries are the singular values of D: σ1 ≥ · · · ≥
σr ≥ 0,

• V ∈ Rp×r is a p× r matrix with orthonormal columns.

Here, for any k ≤ r, let Uk denote the column submatrix of U that consists of the first k columns of
U , and let Vk denote the column submatrix of V that consists of the first k columns of V . Moreover,
let Σk be the k × k diagonal matrix whose entries are the top k singular values σ1, . . . , σk of D.
Then we may consider

Dk = UkΣkV
>
k . (11.1)

Here, the matrix Dk is of rank k. We can argue is that Dk is the best rank-k approximation of D.
To be more precise, we have the following result.
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Theorem 11.1. For any k ≤ min{n, p}, we have

Dk ∈ argminX∈Rn×p {‖D −X‖F : rank(X) ≤ k}

where Dk is defined as in (11.1).

Hence, one can compute an optimal low-rank approximation by computing the singular value
decomposition. It is known that the complexity of deriving the singular value decomposition is

O(npr).

When D is an n = p = r, the complexity is of order O(n3), which is typically inefficient in practice.

2.3 Low-Rank Approximation by the Power Method

Instead of computing the full singular value decomposition of a given matrix D, we may use the
power method to compute the optimal low-rank approximation Dk of rank k. Recall that we can
compute the top left singular vector u1 and the top right singular vector v1 as well as the largest
singular value σ1 by the power method as follows.

Algorithm 1 Power Method for the Top Left Singular Vector

Initialize ū0 ∈ Rn \ {0} and u0 = ū0/‖ū0‖2
for t = 1, . . . , T do

Update ūt = (DD>)tx0
Obtain ut = ūt/‖ūt‖2

end for
Return uT .

Algorithm 2 Power Method for the Top Right Singular Vector

Initialize v̄0 ∈ Rp \ {0} and v0 = v̄0/‖v̄0‖2
for t = 1, . . . , T do

Update v̄t = (D>D)tv0
Obtain vt = v̄t/‖v̄t‖2

end for
Return vT .

Then it follows that

D − u1σ1v>1 = UΣV > − u1σ1v>1 =

u2 · · · ur


σ2 . . .

σr


 v>2

...
v>r

 .
Then we may apply the power method to the matrix D−u1σ1v>1 to compute u2, v2, and σ2, which
are the top left singular vector, the top right singular vector, and the largest singular value of
D − u1σ1v>1 .
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2.4 Low-Rank Approximation via the Projected Gradient Descent

Note that

f(X) =
1

2
‖D −X‖2F =

1

2

n∑
i=1

p∑
j=1

(Dij −Xij)
2

is convex in X. However, the constraint rank(X) ≤ k induces a nonconvex feasible set. Then we
may take the following relaxation using the nuclear norm.

min
X∈Rn×p

1

2
‖D −X‖2F subject to ‖X‖∗ ≤ k (11.2)

where

‖X‖∗ = Trace(
√
X>X) =

min{n,p}∑
i=1

σi(X) ≤ k

and σ1(X), . . . , σmin{n,p}(X) are the singular values of X. It is known that the nuclear norm is a
convex function in X.

In problem (11.2), the constraint set

B =
{
X ∈ Rn×p : ‖X‖∗ ≤ k

}
is what is obtained from scaling up the unit nuclear norm ball {X ∈ Rn×p : ‖X‖∗ ≤ 1}. To
solve (11.2), we may apply projected gradient descent over the constraint set B. It is known
that projection onto the constraint set B amounts to computing the singular value decomposition
of matrix D [DSSSC08].

3 Matrix Completion via the Frank-Wolfe Algorithm

Given a matrix D ∈ Rn×p, let us consider

min
X∈Rn×p

‖D −O �X‖F subject to rank(X) ≤ k

where

• O is the binary matrix with

Oij =

{
1, if Dij 6= 0,

0, if Dij = 0,

• O �X is the Hadamard product of O and X given by

(O �X)ij = OijXij .

Basically, O �X is what is obtained from X after keeping only the entries that correspond to the
observable entries of D. For this version of the matrix completion problem, we need a different
method. As before, we take a relaxation using the nuclear norm as follows.

min
X∈Rn×p

1

2
‖D −O �X‖2F subject to ‖X‖∗ ≤ k.
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Moreover, note that

f(X) =
1

2
‖D −O �X‖2F =

1

2

n∑
i=1

p∑
j=1

(Dij −OijXij)
2

is convex in X as D and O are fixed matrices. Note that

∇f(X) = O �X −D.

In general, we may consider any convex function f(X) on X and

min
X∈Rn×p

f(X) subject to ‖X‖∗ ≤ k (11.3)

with the gradient ∇f(X) of the function f(X). To solve (11.3), we apply another interative
algorithm, the Frank-Wolfe method.

3.1 Frank-Wolfe Method

In this section, we introduce the conditional gradient method, introduced by Frank and Wolfe
in 1956 [FW56]. Named after the author, the conditional gradient method is often referred to as
the Frank-Wolfe algorithm. We consider the following convex optimization problem

min
x∈Rd

f(x) subject to x ∈ C

where f is β-smooth in a norm ‖ · ‖ for some β > 0 and C is a convex set. A pseudo-code of the
method is given in Algorithm 3.

Algorithm 3 Frank-Wolfe Algorithm

Initialize x1 ∈ C.
for t = 1, . . . , T − 1 do

Take vt ∈ argminv∈C ∇f(xt)
>v.

Update xt+1 = (1− λt)xt + λtvt for some 0 < λt < 1.
end for
Return xT .

The main component of the conditional gradient method is to compute the direction vt by solving

min
v∈C
∇f(xt)

>v

whose objective is a linear function. In particular, when C is a polyhedron, it is just a linear pro-
gram. Figure 11.1 provides a pictorial description of the update rule of the Frank-Wolfe algorithm.
vt is a point up to which we can move as far as we can in the direction of −∇f(xt) within C. Then
we take a convex combination of the current point xt and vt to obtain the new iterate vt+1.

The next theorem shows that conditional gradient descent converges with rate O(1/T ) for any
smooth function with repsect to an arbitrary norm.

Theorem 11.2. Let f : Rd → R be a convex function that is β-smooth in a norm ‖ · ‖ for some
β > 0. Let {xt : t = 1, . . . , T} be the sequence of iterates generated by the Frank-Wolfe algorithm
with

λt =
2

t+ 1
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Figure 11.1: Illustration of an update from conditional gradient descent

for each t. Then for any t ≥ 2,

f(xt)− f(x∗) ≤ 2βR2

t+ 1

where x∗ is an optimal solution to minx∈C f(x) and R = supx,y∈C ‖x− y‖.

Proof. Note that

f(xt+1)− f(xt) ≤ ∇f(xt)
>(xt+1 − xt) +

β

2
‖xt+1 − xt‖2

= λt∇f(xt)
>(vt − xt) +

β

2
‖xt+1 − xt‖2

≤ λt∇f(xt)
>(x∗ − xt) +

β

2
‖xt+1 − xt‖2

≤ λt(f(x∗)− f(xt)) +
β

2
‖xt+1 − xt‖2

where the first inequality is from the β-smoothness of f , the first equality follows from xt+1 =
(1 − λt)xt + λtvt, the second inequality is due to the definition of vt = argminv∈C ∇f(xt)

>v, and
the last inequality is by the convexity of f . Since

‖xt+1 − xt‖ = λt‖vt − xt‖ ≤ λtR,

it follows that

f(xt+1)− f(x∗) ≤ (1− λt)(f(xt)− f(x∗)) +
βλ2tR

2

2

=
t− 1

t+ 1
(f(xt)− f(x∗)) +

2βR2

(t+ 1)2
.

By this inequality, it follows that

f(x2)− f(x∗) ≤ βR2

2
≤ 2βR2

3
.

Then by the induction hypothesis,

f(xt+1)− f(x∗) ≤ 2(t− 1) + 2

(t+ 1)2
βR2 =

t

(t+ 1)2
2βR2 ≤ 1

t+ 2
βR2,

as required.
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3.2 Applying the Frank-Wolfe method

The Frank-Wolfe algorithm applied to (11.3) has the following step of computing the direction Vt.
Given Xt ∈ Rn×p,

Vt ∈ argminV ∈B∇f(Xt)
>V

where
B =

{
X ∈ Rn×p : ‖X‖∗ ≤ k

}
.

We will show that Vt can be computed by the power method! To argue this, we need the following
lemmas.

Lemma 11.3. The unit nuclear norm ball is equivalent to the convex hull of rank 1 matrices, i.e.,{
X ∈ Rn×p : ‖X‖∗ ≤ 1

}
= conv

{
uv> : ‖u‖2 = ‖v‖2 = 1, u ∈ Rn, v ∈ Rp

}
.

Based on Lemma 11.3, we prove the second lemma.

Lemma 11.4. Let A ∈ Rn×p be an n × p matrix. Let u and v be the top left and right singular
vectors of −A, respectively. Then

k · uv> ∈ argmin
{
A>X : ‖X‖∗ ≤ k

}
.

By Lemma 11.4, it follows that we can set Vt as

Vt = k · utv>t

where ut and vt are the top left and right singular vectors of

−∇f(Xt) = D −O �Xt,

respectively. Here, ut and vt can be computed by the power method. To summarize, we get the
following pseudo-code.

Algorithm 4 Matrix Completion by the Frank-Wolfe Algorithm

Initialize X1 ∈ B.
for t = 1, . . . , T − 1 do

Compute the top left and right singular vectors ut and vt of D−O�Xt by the power method
Update Xt+1 = (1− λt)Xt + λtVt for some 0 < λt < 1.

end for
Return XT .
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