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1 Outline

In this lecture, we study

e the power method for computing the top eigenvector,
e gradient descent for computing the top eigenvector,

e connections to the singular value decomposition (SVD).

2 Computing the Top Eigenvector

Given a positive semidefinite matrix A € R®¢ we want to compute the top eigenvector of A which

corresponds to the largest eigenvalue of A. Let Apax denote the largest eigenvalue of A, and let
Umax denote the top eigenvector. The closely related notion is the Rayleigh quotinet, defined as

' Az

—

R(A,z) = T

for aly nonzero x.

It is known that for any symmetric matrix A,
max R(A,z) = A\nax,

2ERL:2#£0
argmax R(A, ) = Upax.

rER:2#£0

This implies that we may compute the top eigenvector of a symmetric matrix A by solving

max ' Az subject to |lz[y = 1.
zER?

If A is positive semidefinite, then 2T Az > 0 for any = € R?, which implies that one can replace the
constraint ||z||2 =1 by [|z|]2 < 1 to deduce the equivalent formulation

max ' Az subject to |z < 1.
zeR

Here, the feasible region {x € R? : ||z||z < 1} is a convex set. However, the objective is to
“maximize” the convex function ' Az. Hence, the optimization problem is a nonconvex problem.
Nevertheless, there exists an efficient algorithm for computing the top eigenvector.

2.1 Power Method

We present the power method which is known to compute the top eigenvector of a positive
semidefinite matrix. The power method works with as in Algorithm 1.

To analyze the power method, we explain some necessary background. Let A be a positive semidef-
inite matrix with eigenvalues
AL > -2 A 2 0.
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Algorithm 1 Power Method

Initialize Zo € R%\ {0} and x¢ = Zo/||Zol|2
fort=1,...,7T do
Update 7; = Alzg
Obtain Tt = .’ft/Hi’t”Q
end for
Return x7p.

Let v; denote the eigenvector associated with A; for i € [d]. By the well-known spectral theorem,
we may assume that vy,...,vg are mutually orthogonal and ||v;|| = 1 for ¢ € [d]. Then vy, ..., v4
form an orthonormal basis of R,

Theorem 10.1. Suppose that Ay > Xo. For any € > 0, if

P> M !
O )
=200 — ha) 8 \ (o] 20)2
then
(v 2)2>1—¢
Proof. Since v1,...,vq form an orthonormal basis of R%, we have

d
Zo = E QU
i=1
T

where a; = (v, zg). Moreover, as z; = Alxy, it follows that

d d
— t._ t
Ty = E o; A'v; = E QA V;.
=1 i=1

Note that 4 p
Ty = Z(v;razt)vi and 2|3 = Z(v;xt)z.
i=1 i=1
Since ||z¢]|2 = 1, we have
d d d 242t 2t \d 2 2t
L= (vf2)® =) (v w)* = — (v ;) = =20 < 2 Sis8 1 < T2
2 S R S ST e
This implies that
, W\
1— < (22
(Ul xt) — <)\1> (’Ul $0)2

Hence, if

then (v{ 2;)? > 1 — . Here,

A1 1 Al — A Al — A
2 = [— — > .
log <A2> log (1 - )\1/\_)\2> log (1 N ) =W
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Therefore, if

t> M lo < 1 >
- 2(>\1—)\2) & G(UlTxo)Q ’

then (v] z4)? > 1 — ¢, as required. O

What does the theorem imply? Note that
d

D @) = a5 — (0] @)* = 1= (v 2,)* <e.

1=2

Therefore, x; is aligned with v, which is the top eigenvector. Moreover, the bound has the term
(v{ 20)2. If we sample o from the multivariate normal distribution A'(0, I;) where I, is the d x d

identity matrix, then we can argue that (v{ zo) = 1/poly(d) with high probability. In that case,
the number of required iterations is
A1 d
@) log|—)|.
(Al BT <€>)

Here, the bound depends on the values of A\; and A\o. The following result provides a convergence
guarantee of the power method that does not depend on A; and As.

t > 1 1 2
“log [ ———— ),
T € & e(virxo)Q

x] Az; > (1 — €)1

Theorem 10.2. For any e > 0, if

then

Proof. Let k denote the largest index such that

Ap > (1—%) Al

Let a; = (v wg) for i € [d]. Note that

k d d d 21\ 2t
1 _ > b1 QG €N 2t 1
1— Z(”z’TfUt)Q - Z (0] 21)? = —— Z (o] 3y)? = Z=krL 00 o (1 _ 7) _

i=1 i=k+1 l7ellz , 57, D1 0 AT 2/ (vy 20)?
Moreover,
d . k
x] Ay = Z/\i(v;xt)Z > (1 - 5) A1 Z(UI%&) .
i=1 i=1
Combining the two inequalities, it follows that
€\2t 1
JA (1 - 7) A (1 - 7) .
xt xt 1 < 2 (UFxO)Q
Here, if
t> L 1 2
“log [ —— ),
=% e(v] 20)?
then
Ty Awt (1 — 5) )\1 Z (1 — 6))\1,
as required. O



Again, If we sample zy from the multivariate normal distribution N (0, 1), then the number of

required iterations is
1 d
ot ()
€ €

with high probability.
2.2 Gradient Descent

Recall that for a positive semidefinite matrix A, the top eigenvector of A can be computed by
solving

max ' Az subject to |lz[y < 1.
z€R

Note that this problem is equivalent to

1
min ——z' Az subject to |z|[2 < 1.
z€R

We may apply projected gradient descent to solve this minimization problem. Note that the
projection of any vector u to the ball {x € R? : ||z||s < 1} is given by u/||ull2. Then projected
gradient descent proceeds with

jt—i—l =2+ + 77A£Ut = (I + nA)a:t,
Tiq1

Tyl = —————.
T e

Note that this update rule is equivalent to
Ty = (I +nA) 'z,
Tt

INENTPY

Tt

This corresponds to the power method applied to compute the top eigenvector of matrix I + nA.
In fact, we have

Ai(1 +nA) = (1+4mn) A
The ith largest eigenvalue of I +nA The ith largest eigenvalue of A

Moreover, when v; is the eigenvector that corresponds to A;, we have that v; is the eigenvector that
corresponds to the ith largest eigenvalue of I +nA. This implies that the gradient descent method
indeed computes the top eigenvector of A, and the covergence rate is

- (2) =0 (e ()

2.3 Computing the Largest Singular Value

Let A € R™P be an n x p matrix. The famous singular value decomposition (SVD) theorem

states that A can written as
A=Uxv"

where



e 7 = min{n,p},
e U € R™" is an n X r matrix with orthonormal columns,
e X € R"™" is a r x r diagonal matrix with entries o4 > --- > 0, > 0,

e V € RP*" is a p x r matrix with orthonormal columns.

Here, 01, ...,0, are the singular values of A. Let u; denote the top left singular vector that
corresponds to o1, and let v; denote the top right singular vector corresponding to o;. Note
that

ATA=V3V" and AAT =UX*U"

which implies that

01 =\ Amax(AT4) = 1/ Amax(AAT).

Therefore, by applying the power method to AT A, one can obtain the top right singular vector v;.
Similarly, by applying the power method to AA", we can deduce the top left singular vector u;.

Algorithm 2 Power Method for the Top Left Singular Vector
Initialize ug € R™ \ {O} and ug = ﬂg/HEQHQ
fort=1,...,7 do
Update @; = (AAT )ty
Obtain u; = /|| ae||2
end for
Return uyp.

Algorithm 3 Power Method for the Top Right Singular Vector
Initialize vy € RP \ {0} and vy = @0/”@0”2
fort=1,...,7 do
Update oy = (AT A)tug
Obtain vy = o,/ ||v¢]|2
end for
Return vyp.
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