1 Outline

In this lecture, we study

- the power method for computing the top eigenvector,
- gradient descent for computing the top eigenvector,
- connections to the singular value decomposition (SVD).

2 Computing the Top Eigenvector

Given a positive semidefinite matrix $A \in \mathbb{R}^{d \times d}$, we want to compute the top eigenvector of A which corresponds to the largest eigenvalue of A. Let λ_{\max} denote the largest eigenvalue of A, and let v_{\max} denote the top eigenvector. The closely related notion is the **Rayleigh quotinet**, defined as

$$R(A, x) = \frac{x^{\top}Ax}{x^{\top}x}$$
 for any nonzero x .

It is known that for any symmetric matrix A,

$$\max_{\substack{x \in \mathbb{R}^d : x \neq 0}} R(A, x) = \lambda_{\max},$$
$$\operatorname{argmax}_{x \in \mathbb{R}^d : x \neq 0} R(A, x) = v_{\max}.$$

This implies that we may compute the top eigenvector of a symmetric matrix A by solving

$$\max_{x \in \mathbb{R}^d} \quad x^\top A x \quad \text{subject to} \quad \|x\|_2 = 1.$$

If A is positive semidefinite, then $x^{\top}Ax \ge 0$ for any $x \in \mathbb{R}^d$, which implies that one can replace the constraint $||x||_2 = 1$ by $||x||_2 \le 1$ to deduce the equivalent formulation

$$\max_{x \in \mathbb{R}^d} \quad x^\top A x \quad \text{subject to} \quad \|x\|_2 \le 1.$$

Here, the feasible region $\{x \in \mathbb{R}^d : \|x\|_2 \leq 1\}$ is a convex set. However, the objective is to "maximize" the convex function $x^{\top}Ax$. Hence, the optimization problem is a nonconvex problem. Nevertheless, there exists an efficient algorithm for computing the top eigenvector.

2.1 Power Method

We present the **power method** which is known to compute the top eigenvector of a positive semidefinite matrix. The power method works with as in Algorithm 1.

To analyze the power method, we explain some necessary background. Let A be a positive semidefinite matrix with eigenvalues

$$\lambda_1 \geq \cdots \geq \lambda_d \geq 0.$$

Algorithm 1 Power Method

Initialize $\bar{x}_0 \in \mathbb{R}^d \setminus \{0\}$ and $x_0 = \bar{x}_0 / \|\bar{x}_0\|_2$ for t = 1, ..., T do Update $\bar{x}_t = A^t x_0$ Obtain $x_t = \bar{x}_t / \|\bar{x}_t\|_2$ end for Return x_T .

Let v_i denote the eigenvector associated with λ_i for $i \in [d]$. By the well-known **spectral theorem**, we may assume that v_1, \ldots, v_d are mutually orthogonal and $||v_i|| = 1$ for $i \in [d]$. Then v_1, \ldots, v_d form an orthonormal basis of \mathbb{R}^d .

Theorem 10.1. Suppose that $\lambda_1 > \lambda_2$. For any $\epsilon > 0$, if

$$t \ge \frac{\lambda_1}{2(\lambda_1 - \lambda_2)} \log\left(\frac{1}{\epsilon(v_1^{\top} x_0)^2}\right),$$

then

$$(v_1^\top x_t)^2 \ge 1 - \epsilon$$

Proof. Since v_1, \ldots, v_d form an orthonormal basis of \mathbb{R}^d , we have

$$x_0 = \sum_{i=1}^d \alpha_i v_i$$

where $\alpha_i = (v_i^{\top} x_0)$. Moreover, as $\bar{x}_t = A^t x_0$, it follows that

$$\bar{x}_t = \sum_{i=1}^d \alpha_i A^t v_i = \sum_{i=1}^d \alpha_i \lambda_i^t v_i.$$

Note that

$$x_t = \sum_{i=1}^d (v_i^{\top} x_t) v_i$$
 and $||x_t||_2^2 = \sum_{i=1}^d (v_i^{\top} x_t)^2$.

Since $||x_t||_2 = 1$, we have

$$1 - (v_1^{\top} x_t)^2 = \sum_{i=2}^d (v_i^{\top} x_t)^2 = \frac{1}{\|\bar{x}_t\|_2^2} \sum_{i=2}^d (v_i^{\top} \bar{x}_t)^2 = \frac{\sum_{i=2}^d \alpha_i^2 \lambda_i^{2t}}{\sum_{i=1}^d \alpha_i^2 \lambda_i^{2t}} \le \frac{\lambda_2^{2t} \sum_{i=2}^d \alpha_i^2}{\alpha_1^2 \lambda_1^{2t}} \le \frac{\lambda_2^{2t}}{\alpha_1^2 \lambda_1^2} \le \frac{\lambda_2^{2t}}{\alpha_1$$

This implies that

$$1 - (v_1^{\top} x_t)^2 \le \left(\frac{\lambda_2}{\lambda_1}\right)^{2t} \frac{1}{(v_1^{\top} x_0)^2}.$$

Hence, if

$$t \ge \frac{1}{2} \cdot \frac{1}{\log\left(\lambda_1/\lambda_2\right)} \log\left(\frac{1}{\epsilon(v_1^{\top} x_0)^2}\right),$$

then $(v_1^{\top} x_t)^2 \ge 1 - \epsilon$. Here,

$$\log\left(\frac{\lambda_1}{\lambda_2}\right) = \log\left(\frac{1}{1 - \frac{\lambda_1 - \lambda_2}{\lambda_1}}\right) = -\log\left(1 - \frac{\lambda_1 - \lambda_2}{\lambda_1}\right) \ge \frac{\lambda_1 - \lambda_2}{\lambda_1}.$$

Therefore, if

$$t \ge \frac{\lambda_1}{2(\lambda_1 - \lambda_2)} \log \left(\frac{1}{\epsilon (v_1^\top x_0)^2}\right)$$

then $(v_1^{\top} x_t)^2 \ge 1 - \epsilon$, as required.

What does the theorem imply? Note that

$$\sum_{i=2}^{a} (v_i^{\top} x_t)^2 = \|x_t\|_2^2 - (v_1^{\top} x_t)^2 = 1 - (v_1^{\top} x_t)^2 \le \epsilon.$$

Therefore, x_t is aligned with v_1 , which is the top eigenvector. Moreover, the bound has the term $(v_1^{\top}x_0)^2$. If we sample x_0 from the multivariate normal distribution $\mathcal{N}(0, I_d)$ where I_d is the $d \times d$ identity matrix, then we can argue that $(v_1^{\top}x_0) = 1/\text{poly}(d)$ with high probability. In that case, the number of required iterations is

$$O\left(\frac{\lambda_1}{\lambda_1 - \lambda_2}\log\left(\frac{d}{\epsilon}\right)\right).$$

Here, the bound depends on the values of λ_1 and λ_2 . The following result provides a convergence guarantee of the power method that does not depend on λ_1 and λ_2 .

Theorem 10.2. For any $\epsilon > 0$, if

$$t \ge \frac{1}{\epsilon} \log \left(\frac{2}{\epsilon (v_1^\top x_0)^2} \right),$$

then

$$x_t^{\top} A x_t \ge (1 - \epsilon) \lambda_1.$$

Proof. Let k denote the largest index such that

$$\lambda_k \ge \left(1 - \frac{\epsilon}{2}\right)\lambda_1.$$

Let $\alpha_i = (v_i^{\top} x_0)$ for $i \in [d]$. Note that

$$1 - \sum_{i=1}^{k} (v_i^{\top} x_t)^2 = \sum_{i=k+1}^{d} (v_i^{\top} x_t)^2 = \frac{1}{\|\bar{x}_t\|_2^2} \sum_{i=k+1}^{d} (v_i^{\top} \bar{x}_t)^2 = \frac{\sum_{i=k+1}^{d} \alpha_i^2 \lambda_i^{2t}}{\sum_{i=1}^{d} \alpha_i^2 \lambda_i^{2t}} \le \left(1 - \frac{\epsilon}{2}\right)^{2t} \frac{1}{(v_1^{\top} x_0)^2}.$$

Moreover,

$$x_t^{\top} A x_t = \sum_{i=1}^d \lambda_i (v_i^{\top} x_t)^2 \ge \left(1 - \frac{\epsilon}{2}\right) \lambda_1 \sum_{i=1}^k (v_i^{\top} x_t)^2.$$

Combining the two inequalities, it follows that

$$x_t^{\top} A x_t \ge \left(1 - \frac{\epsilon}{2}\right) \lambda_1 \left(1 - \left(1 - \frac{\epsilon}{2}\right)^{2t} \frac{1}{(v_1^{\top} x_0)^2}\right)$$

Here, if

$$t \ge \frac{1}{\epsilon} \log\left(\frac{2}{\epsilon (v_1^\top x_0)^2}\right),$$

then

$$x_t^{\top} A x_t \ge \left(1 - \frac{\epsilon}{2}\right)^2 \lambda_1 \ge (1 - \epsilon) \lambda_1,$$

as required.

Again, If we sample x_0 from the multivariate normal distribution $\mathcal{N}(0, I_d)$, then the number of required iterations is

$$O\left(\frac{1}{\epsilon}\log\left(\frac{d}{\epsilon}\right)\right)$$

with high probability.

2.2**Gradient Descent**

Recall that for a positive semidefinite matrix A, the top eigenvector of A can be computed by solving

$$\max_{x \in \mathbb{R}^d} \quad x^\top A x \quad \text{subject to} \quad \|x\|_2 \le 1.$$

Note that this problem is equivalent to

$$\min_{x \in \mathbb{R}^d} \quad -\frac{1}{2} x^\top A x \quad \text{subject to} \quad \|x\|_2 \le 1.$$

We may apply projected gradient descent to solve this minimization problem. Note that the projection of any vector u to the ball $\{x \in \mathbb{R}^d : ||x||_2 \leq 1\}$ is given by $u/||u||_2$. Then projected gradient descent proceeds with

$$\tilde{x}_{t+1} = x_t + \eta A x_t = (I + \eta A) x_t,$$
$$x_{t+1} = \frac{\tilde{x}_{t+1}}{\|\tilde{x}_{t+1}\|_2}.$$

Note that this update rule is equivalent to

$$\bar{x}_t = (I + \eta A)^t x_0,$$
$$x_t = \frac{\tilde{x}_t}{\|\tilde{x}_t\|_2}.$$

This corresponds to the power method applied to compute the top eigenvector of matrix $I + \eta A$. In fact, we have

$$\underbrace{\lambda_i(I+\eta A)}_{\text{The ith largest eigenvalue of }I+\eta A} = (1+\eta) \underbrace{\lambda_i}_{\text{The ith largest eigenvalue of }A}.$$

Moreover, when v_i is the eigenvector that corresponds to λ_i , we have that v_i is the eigenvector that corresponds to the *i*th largest eigenvalue of $I + \eta A$. This implies that the gradient descent method indeed computes the top eigenvector of A, and the covergence rate is

$$O\left(\frac{(1+\eta)\lambda_1}{(1+\eta)\lambda_1 - (1+\eta)\lambda_2}\log\left(\frac{d}{\epsilon}\right)\right) = O\left(\frac{\lambda_1}{\lambda_1 - \lambda_2}\log\left(\frac{d}{\epsilon}\right)\right).$$

$\mathbf{2.3}$ Computing the Largest Singular Value

Let $A \in \mathbb{R}^{n \times p}$ be an $n \times p$ matrix. The famous singular value decomposition (SVD) theorem states that A can written as Т

$$A = U\Sigma V$$

where

- $r = \min\{n, p\},$
- $U \in \mathbb{R}^{n \times r}$ is an $n \times r$ matrix with orthonormal columns,
- $\Sigma \in \mathbb{R}^{r \times r}$ is a $r \times r$ diagonal matrix with entries $\sigma_1 \ge \cdots \ge \sigma_r \ge 0$,
- $V \in \mathbb{R}^{p \times r}$ is a $p \times r$ matrix with orthonormal columns.

Here, $\sigma_1, \ldots, \sigma_r$ are the singular values of A. Let u_1 denote the top left singular vector that corresponds to σ_1 , and let v_1 denote the top right singular vector corresponding to σ_1 . Note that

$$A^{\top}A = V\Sigma^2 V^{\top}$$
 and $AA^{\top} = U\Sigma^2 U^{\top}$

which implies that

$$\sigma_1 = \sqrt{\lambda_{\max}(A^{\top}A)} = \sqrt{\lambda_{\max}(AA^{\top})}.$$

Therefore, by applying the power method to $A^{\top}A$, one can obtain the top right singular vector v_1 . Similarly, by applying the power method to AA^{\top} , we can deduce the top left singular vector u_1 .

Algorithm 2 Power Method for the Top Left Singular Vector

Initialize $\bar{u}_0 \in \mathbb{R}^n \setminus \{0\}$ and $u_0 = \bar{u}_0 / \|\bar{u}_0\|_2$ for t = 1, ..., T do Update $\bar{u}_t = (AA^{\top})^t x_0$ Obtain $u_t = \bar{u}_t / \|\bar{u}_t\|_2$ end for Return u_T .

Algorithm 3 Power Method for the Top Right Singular Vector

Initialize $\bar{v}_0 \in \mathbb{R}^p \setminus \{0\}$ and $v_0 = \bar{v}_0 / \|\bar{v}_0\|_2$ for t = 1, ..., T do Update $\bar{v}_t = (A^\top A)^t v_0$ Obtain $v_t = \bar{v}_t / \|\bar{v}_t\|_2$ end for Return v_T .