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1 Outline

In this lecture, we study

• the power method for computing the top eigenvector,

• gradient descent for computing the top eigenvector,

• connections to the singular value decomposition (SVD).

2 Computing the Top Eigenvector

Given a positive semidefinite matrix A ∈ Rd×d, we want to compute the top eigenvector of A which
corresponds to the largest eigenvalue of A. Let λmax denote the largest eigenvalue of A, and let
vmax denote the top eigenvector. The closely related notion is the Rayleigh quotinet, defined as

R(A, x) =
x>Ax

x>x
for any nonzero x.

It is known that for any symmetric matrix A,

max
x∈Rd:x 6=0

R(A, x) = λmax,

argmax
x∈Rd:x 6=0

R(A, x) = vmax.

This implies that we may compute the top eigenvector of a symmetric matrix A by solving

max
x∈Rd

x>Ax subject to ‖x‖2 = 1.

If A is positive semidefinite, then x>Ax ≥ 0 for any x ∈ Rd, which implies that one can replace the
constraint ‖x‖2 = 1 by ‖x‖2 ≤ 1 to deduce the equivalent formulation

max
x∈Rd

x>Ax subject to ‖x‖2 ≤ 1.

Here, the feasible region {x ∈ Rd : ‖x‖2 ≤ 1} is a convex set. However, the objective is to
“maximize” the convex function x>Ax. Hence, the optimization problem is a nonconvex problem.
Nevertheless, there exists an efficient algorithm for computing the top eigenvector.

2.1 Power Method

We present the power method which is known to compute the top eigenvector of a positive
semidefinite matrix. The power method works with as in Algorithm 1.

To analyze the power method, we explain some necessary background. Let A be a positive semidef-
inite matrix with eigenvalues

λ1 ≥ · · · ≥ λd ≥ 0.
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Algorithm 1 Power Method

Initialize x̄0 ∈ Rd \ {0} and x0 = x̄0/‖x̄0‖2
for t = 1, . . . , T do

Update x̄t = Atx0
Obtain xt = x̄t/‖x̄t‖2

end for
Return xT .

Let vi denote the eigenvector associated with λi for i ∈ [d]. By the well-known spectral theorem,
we may assume that v1, . . . , vd are mutually orthogonal and ‖vi‖ = 1 for i ∈ [d]. Then v1, . . . , vd
form an orthonormal basis of Rd.

Theorem 10.1. Suppose that λ1 > λ2. For any ε > 0, if

t ≥ λ1
2(λ1 − λ2)

log

(
1

ε(v>1 x0)
2

)
,

then
(v>1 xt)

2 ≥ 1− ε

Proof. Since v1, . . . , vd form an orthonormal basis of Rd, we have

x0 =

d∑
i=1

αivi

where αi = (v>i x0). Moreover, as x̄t = Atx0, it follows that

x̄t =

d∑
i=1

αiA
tvi =

d∑
i=1

αiλ
t
ivi.

Note that

xt =
d∑
i=1

(v>i xt)vi and ‖xt‖22 =
d∑
i=1

(v>i xt)
2.

Since ‖xt‖2 = 1, we have

1− (v>1 xt)
2 =

d∑
i=2

(v>i xt)
2 =

1

‖x̄t‖22

d∑
i=2

(v>i x̄t)
2 =

∑d
i=2 α

2
iλ

2t
i∑d

i=1 α
2
iλ

2t
i

≤
λ2t2
∑d

i=2 α
2
i

α2
1λ

2t
1

≤ λ2t2
α2
1λ

2t
1

.

This implies that

1− (v>1 xt)
2 ≤

(
λ2
λ1

)2t 1

(v>1 x0)
2
.

Hence, if

t ≥ 1

2
· 1

log (λ1/λ2)
log

(
1

ε(v>1 x0)
2

)
,

then (v>1 xt)
2 ≥ 1− ε. Here,

log

(
λ1
λ2

)
= log

(
1

1− λ1−λ2
λ1

)
= − log

(
1− λ1 − λ2

λ1

)
≥ λ1 − λ2

λ1
.
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Therefore, if

t ≥ λ1
2(λ1 − λ2)

log

(
1

ε(v>1 x0)
2

)
,

then (v>1 xt)
2 ≥ 1− ε, as required.

What does the theorem imply? Note that

d∑
i=2

(v>i xt)
2 = ‖xt‖22 − (v>1 xt)

2 = 1− (v>1 xt)
2 ≤ ε.

Therefore, xt is aligned with v1, which is the top eigenvector. Moreover, the bound has the term
(v>1 x0)

2. If we sample x0 from the multivariate normal distribution N (0, Id) where Id is the d× d
identity matrix, then we can argue that (v>1 x0) = 1/poly(d) with high probability. In that case,
the number of required iterations is

O

(
λ1

λ1 − λ2
log

(
d

ε

))
.

Here, the bound depends on the values of λ1 and λ2. The following result provides a convergence
guarantee of the power method that does not depend on λ1 and λ2.

Theorem 10.2. For any ε > 0, if

t ≥ 1

ε
log

(
2

ε(v>1 x0)
2

)
,

then
x>t Axt ≥ (1− ε)λ1.

Proof. Let k denote the largest index such that

λk ≥
(

1− ε

2

)
λ1.

Let αi = (v>i x0) for i ∈ [d]. Note that

1−
k∑
i=1

(v>i xt)
2 =

d∑
i=k+1

(v>i xt)
2 =

1

‖x̄t‖22

d∑
i=k+1

(v>i x̄t)
2 =

∑d
i=k+1 α

2
iλ

2t
i∑d

i=1 α
2
iλ

2t
i

≤
(

1− ε

2

)2t 1

(v>1 x0)
2
.

Moreover,

x>t Axt =
d∑
i=1

λi(v
>
i xt)

2 ≥
(

1− ε

2

)
λ1

k∑
i=1

(v>i xt)
2.

Combining the two inequalities, it follows that

x>t Axt ≥
(

1− ε

2

)
λ1

(
1−

(
1− ε

2

)2t 1

(v>1 x0)
2

)
.

Here, if

t ≥ 1

ε
log

(
2

ε(v>1 x0)
2

)
,

then

x>t Axt ≥
(

1− ε

2

)2
λ1 ≥ (1− ε)λ1,

as required.
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Again, If we sample x0 from the multivariate normal distribution N (0, Id), then the number of
required iterations is

O

(
1

ε
log

(
d

ε

))
with high probability.

2.2 Gradient Descent

Recall that for a positive semidefinite matrix A, the top eigenvector of A can be computed by
solving

max
x∈Rd

x>Ax subject to ‖x‖2 ≤ 1.

Note that this problem is equivalent to

min
x∈Rd

−1

2
x>Ax subject to ‖x‖2 ≤ 1.

We may apply projected gradient descent to solve this minimization problem. Note that the
projection of any vector u to the ball {x ∈ Rd : ‖x‖2 ≤ 1} is given by u/‖u‖2. Then projected
gradient descent proceeds with

x̃t+1 = xt + ηAxt = (I + ηA)xt,

xt+1 =
x̃t+1

‖x̃t+1‖2
.

Note that this update rule is equivalent to

x̄t = (I + ηA)tx0,

xt =
x̃t
‖x̃t‖2

.

This corresponds to the power method applied to compute the top eigenvector of matrix I + ηA.
In fact, we have

λi(I + ηA)︸ ︷︷ ︸
The ith largest eigenvalue of I + ηA

= (1 + η) λi︸︷︷︸
The ith largest eigenvalue of A

.

Moreover, when vi is the eigenvector that corresponds to λi, we have that vi is the eigenvector that
corresponds to the ith largest eigenvalue of I + ηA. This implies that the gradient descent method
indeed computes the top eigenvector of A, and the covergence rate is

O

(
(1 + η)λ1

(1 + η)λ1 − (1 + η)λ2
log

(
d

ε

))
= O

(
λ1

λ1 − λ2
log

(
d

ε

))
.

2.3 Computing the Largest Singular Value

Let A ∈ Rn×p be an n× p matrix. The famous singular value decomposition (SVD) theorem
states that A can written as

A = UΣV >

where
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• r = min{n, p},

• U ∈ Rn×r is an n× r matrix with orthonormal columns,

• Σ ∈ Rr×r is a r × r diagonal matrix with entries σ1 ≥ · · · ≥ σr ≥ 0,

• V ∈ Rp×r is a p× r matrix with orthonormal columns.

Here, σ1, . . . , σr are the singular values of A. Let u1 denote the top left singular vector that
corresponds to σ1, and let v1 denote the top right singular vector corresponding to σ1. Note
that

A>A = V Σ2V > and AA> = UΣ2U>

which implies that

σ1 =
√
λmax(A>A) =

√
λmax(AA>).

Therefore, by applying the power method to A>A, one can obtain the top right singular vector v1.
Similarly, by applying the power method to AA>, we can deduce the top left singular vector u1.

Algorithm 2 Power Method for the Top Left Singular Vector

Initialize ū0 ∈ Rn \ {0} and u0 = ū0/‖ū0‖2
for t = 1, . . . , T do

Update ūt = (AA>)tx0
Obtain ut = ūt/‖ūt‖2

end for
Return uT .

Algorithm 3 Power Method for the Top Right Singular Vector

Initialize v̄0 ∈ Rp \ {0} and v0 = v̄0/‖v̄0‖2
for t = 1, . . . , T do

Update v̄t = (A>A)tv0
Obtain vt = v̄t/‖v̄t‖2

end for
Return vT .
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