DS801 Advanced Optimization for Data Science Assignment 2

Spring 2024

Out: 3rd April 2024 Due: 17th April 2024 at 11:59pm

Instructions

- Submit a PDF document with your solutions through the assignment portal on KLMS by the due date. Please ensure that your name and student ID are on the front page.
- Late assignments will not be accepted except in extenuating circumstances. Special consideration should be applied for in this case.
- It is **required** that you **typeset your solutions in LaTeX**. Handwritten solutions will not be accepted.
- Spend some time ensuring your arguments are **coherent** and your solutions **clearly** communicate your ideas.

Question:	1	2	3	4	5	6	Total
Points:	20	10	20	20	10	20	100

1. Recall that for a square matrix $A \in \mathbb{R}^d$, the Rayleigh quotinet is defined as

$$R(A, x) = \frac{x^{\top}Ax}{x^{\top}x}$$
 for any nonzero x .

- (a) (10 points) Let λ_{\max} denote the largest eigenvalue of A, and let v_{\max} denote the associated eigenvector. Prove that $\max_{x \in \mathbb{R}^d: x \neq 0} R(A, x) = \lambda_{\max}$ and $\arg \max_{x \in \mathbb{R}^d: x \neq 0} R(A, x) = v_{\max}$.
- (b) (10 points) Let λ_{\min} denote the largest eigenvalue of A, and let v_{\min} denote the associated eigenvector. Prove that $\min_{x \in \mathbb{R}^d: x \neq 0} R(A, x) = \lambda_{\max}$ and $\arg\min_{x \in \mathbb{R}^d: x \neq 0} R(A, x) = v_{\max}$.
- 2. (10 points) Let $A \in \mathbb{R}^d$ be a symmetric matrix that is not necessarily positive semidefinite. Suppose that the eigenvalues $\lambda_1, \ldots, \lambda_d$ of A satisfy

$$|\lambda_1| \ge |\lambda_2| \ge \cdots \ge |\lambda_d|.$$

Let v_i denote the eigenvector of A associated with λ_i for $i \in [d]$. Moreover, let x_t denote the iterate generated by the power methods after t iterations where the initial point is x_0 . Prove that the power method guarantees that for any $\epsilon > 0$, if

$$t \geq \frac{|\lambda_1|}{2(|\lambda_1| - |\lambda_2|)} \log \left(\frac{1}{\epsilon (v_1^\top x_0)^2}\right),$$

 $(v_1^{\top} x_t)^2 > 1 - \epsilon.$

then

3. (20 points) Prove that the unit nuclear norm ball is equivalent to the convex hull of rank 1 matrices, i.e.,

$$\{X \in \mathbb{R}^{n \times p} : \|X\|_* \le 1\} = \operatorname{conv} \{uv^\top : \|u\|_2 = \|v\|_2 = 1, \ u \in \mathbb{R}^n, \ v \in \mathbb{R}^p\}.$$

4. (20 points) Let $A \in \mathbb{R}^{n \times p}$ be an $n \times p$ matrix. Let u and v be the top left and right singular vectors of -A, respectively. Prove that

 $k \cdot uv^{\top} \in \operatorname{argmin} \left\{ A^{\top} X : \|X\|_* \le k \right\}.$

- 5. (10 points) We discussed an algorithm for computing an (ϵ, δ) -SOSP in Lecture 12. Recall that there is a step checking if $\nabla^2 f(x) \succeq -\delta I$ and that if it does not hold, we compute a unit vector v such that $v^{\top} \nabla^2 f(x) v < -\delta$. Provide an efficient algorithm computing such a vector without singular value decomposition.
- 6. (20 points) Suppose that a function $f : \mathbb{R}^d \to \mathbb{R}$ is β -smooth in the ℓ_2 -norm. Then we apply adaptive gradient descent with an initial point x_1 with step size

$$\eta_t = C\left(\sum_{s=1}^t \|\nabla f(x_s)\|_2^2\right)^{-1/2}$$

for $t \ge 1$ where $C \le \|\nabla f(x_1)\|_2/\beta$. Let x_2, \ldots, x_T denote the iterates generated by the adaptive gradient descent after T-1 iterations. Prove that

$$\min\left\{\|\nabla f(x_s)\|_2^2: \ 1 \le s \le t\right\} \le \frac{4(f(x_1) - f(x^*))^2}{C^2 T}$$

where $x^* \in \arg \min_{x \in \mathbb{R}^d} f(x)$.