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DS801 Advanced Optimization for Data Science Assignment 2 Due 17th April 2024

1. Recall that for a square matrix A ∈ Rd, the Rayleigh quotinet is defined as

R(A, x) =
x>Ax

x>x
for any nonzero x.

(a) (10 points) Let λmax denote the largest eigenvalue of A, and let vmax denote the associated eigenvector.
Prove that maxx∈Rd:x 6=0R(A, x) = λmax and arg maxx∈Rd:x 6=0R(A, x) = vmax.

(b) (10 points) Let λmin denote the largest eigenvalue of A, and let vmin denote the associated eigenvector.
Prove that minx∈Rd:x 6=0R(A, x) = λmax and arg minx∈Rd:x6=0R(A, x) = vmax.

2. (10 points) Let A ∈ Rd be a symmetric matrix that is not necessarily positive semidefinite. Suppose that
the eigenvalues λ1, . . . , λd of A satisfy

|λ1| ≥ |λ2| ≥ · · · ≥ |λd|.

Let vi denote the eigenvector of A associated with λi for i ∈ [d]. Moreover, let xt denote the iterate
generated by the power methods after t iterations where the initial point is x0. Prove that the power
method guarantees that for any ε > 0, if

t ≥ |λ1|
2(|λ1| − |λ2|)

log

(
1

ε(v>1 x0)2

)
,

then
(v>1 xt)

2 ≥ 1− ε.

3. (20 points) Prove that the unit nuclear norm ball is equivalent to the convex hull of rank 1 matrices, i.e.,{
X ∈ Rn×p : ‖X‖∗ ≤ 1

}
= conv

{
uv> : ‖u‖2 = ‖v‖2 = 1, u ∈ Rn, v ∈ Rp

}
.

4. (20 points) Let A ∈ Rn×p be an n× p matrix. Let u and v be the top left and right singular vectors of −A,
respectively. Prove that

k · uv> ∈ argmin
{
A>X : ‖X‖∗ ≤ k

}
.

5. (10 points) We discussed an algorithm for computing an (ε, δ)-SOSP in Lecture 12. Recall that there is
a step checking if ∇2f(x) � −δI and that if it does not hold, we compute a unit vector v such that
v>∇2f(x)v < −δ. Provide an efficient algorithm computing such a vector without singular value
decomposition.

6. (20 points) Suppose that a function f : Rd → R is β-smooth in the `2-norm. Then we apply adaptive
gradient descent with an initial point x1 with step size

ηt = C

(
t∑

s=1

‖∇f(xs)‖22

)−1/2
for t ≥ 1 where C ≤ ‖∇f(x1)‖2/β. Let x2, . . . , xT denote the iterates generated by the adaptive gradient
descent after T − 1 iterations. Prove that

min
{
‖∇f(xs)‖22 : 1 ≤ s ≤ t

}
≤ 4(f(x1)− f(x∗))2

C2T

where x∗ ∈ arg minx∈Rd f(x).
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