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Submodular functions

® Let E be a set of elements. We say that a set function f : 2f — R is
submodular if it satisfies

f(A)+f(B) > f(AUB)+f(ANB)

forall AABCE.

® An equivalent definition of submodularity for set functions is the notion of
diminishing marginal returns property.
® That is, a set function f : 2 — R is submodular if and only if it satisfies

f(AU{e}) - f(A) = f(BU{e}) - f(B)

foral ACBC E and e ¢ B.



Submodular functions

Examples
® Linear function: For any w € RIE!, £ with
f(S) = Z We
e€S

for S C E is submodaular.

® Concave utility: For any concave function g : Ry — R and w € R‘f‘, f

with
F(S) = (> _ we)
ecS
for S C E is a submodular function.
® Coverage function: Suppose that each element e € E corresponds to
some area A.. Then f with

f(S) = [ Uees Al

for S C E is submodular.



Submodular functions

Examples
® Success probability: Let p. € [0,1] for e € E. Then f with
7(S)=1- - po)
ecS
for S C E is submodaular.
® Graph cuts: Let G = (V, E) be an undirected graph. Then f with

£(S) = 16(S)]
for S C V is submodular, where §(S) is the set of edges crossing the

partition (S, V' \ S) of the vertex set V.

¢ Directed cuts: Let D = (N, A) be a directed graph. Then f with
f(S) = |67(S)| for S C V is submodular, where §7(S) is the set of arcs
leaving S.

® Matroid rank functions: Let M = (E,Z) be a matroid. Then its rank
function r given by r(S) = max{|A|: A€ I} for S C E is submodular.



Submodular functions

® As this wide range of examples suggests, submodular functions provide a
useful framework for modeling discrete-valued decision variables.

® For utility, coverage, and success probability functions, the problem of
maximizing a submodular function is relevant.

® For cut functions, submodular function minimization is relevant.

® As a first step, in this lecture, we consider the minimization problem.



Submodular function minimization

® Let us consider the problem of minimizing a submodular function.

e Given a submodular function  : 26 — R over the element set E, we
consider
minimize f(S) subjectto S C E. (1)
® Since f is a set function, we can interpret the function over the set of
binary vectors {0, 1}/El.
® Any S C E can be represented by its characteristic vector 15 € {0, 1}‘5‘
that takes 1 for the elements in S and 0 for the other elements.

® Similarly, any vector z € {0, 1}/l corresponds to a subset
S,={e€E:z =1}

® Then, with a slight abuse of notation, we may define
f(z) := f(S;).

® Then the problem can be rewritten as the following binary optimization
problem:
minimize f(z) subjectto ze {0,1}F 2



Submodular function minimization

® Note that with an auxiliary variable y to make the objective linear, (2) is
equivalent to
minimize y subjectto (y,z) € Qr 3)

where Qr is the epigraph of f given by
Qr = {(y,z) eERx{0,1}f1: y > f(z)}.
® Since y is a linear function, it follows that (3) is equivalent to
minimize y subject to (y,z) € conv(Q¥) (4)

where conv(Qr) is the convex hull of Q.

® By the equivalence between optimization and separation, the optimization
problem (4) is equivalent to separation over conv(Qr).



Submodular function minimization

® Next we will characterize the convex hull of Qf and provide a linear
description of it.

® To do so, we need to define the extended polymatroid of f, given by

EP; = {w R N r < F(S) forall SC E}.
ecS

® Note that the extended polymatroid is nonempty if and only if f(@) > 0.

® In general, a submodular function f does not have to satisfy f({) > 0.

® Nevertheless, we may take f — (), instead of f, which is submodular if f
is submodular.

® Henceforth, we assume that f(()) = 0.



Submodular function minimization

® Having defined the extended polymatroid, we are ready to characterize the
convex hull of Qr.

Theorem (Edmonds, Lovész)

Let f: {0,1}/El = R be a submodular function with f(0) = 0, and let Qs be
its epigraph. Then

conv(Qr) = {(y,z) eRx[0,1]5: y>7x"z foraline EPf} .

* Given (y,z) € R x [0,1]'¥l, deciding whether (y, z) € conv(Qr) boils
down to computing the maximum value of z "7 over all m € EP.



Submodular function minimization

® Edmonds proved that there is a greedy algorithm for computing the
maximum of a linear function over the extended polymatroid EPs.

Theorem (Edmonds)

Let z € RIEl. Then the linear program

max{zzeﬂe: e EPF} (P)

eckE

can be solved in O(|E|log |E|) time by a greedy algorithm.



Submodular function minimization

® Recall that the equivalence of optimization and separation is based on the
ellipsoid method.

® Grotschel, Lovédsz, and Schrijver showed that the algorithm can be turned
into a strongly polynomial time algorithm.
Theorem (Grétschel, Lovasz, and Schrijver)
Let f : 2 — R be submodular over the element set E. Then one can find

S C E minimizing f in strongly polynomial time.

® Later, Iwata, Fleischer, and Fujishige and Schrijver independently provided
combinatorial algorithms for submodular function minimization.



Inventory planning

® We consider an inventory planning problem.
® A retail store prepares some inventory of items before the market opens.

® The retail store can observe the actual demand after the market opens.



Inventory planning

® y: the amount of items that the retail store prepares before the market
opens.

® h: the unit cost of preparing items before the market opens.

® b: the stochastic demand for items.



Inventory planning

Assumption

® There are n possibilities, given by bi, ..., b,, for the stochastic demand b.

® Historically, the demand is equal to value b; with probability pj, i.e.,
P [b = b,‘] = pi.

® Here, p1,...,pn>0and Y .  pi=1.

® We assume that the probability distribution is known to the
decision-maker.

Each case of demand realization is called a scenario
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Chance-constrained programs

® The purchase decision is based on the distribution of the stochastic
demand.

® The first attempt is to prepare again all possible scenarios.

® Basically, we target the largest possible demand by solving

min  hy
st. y>bi, i=1,...,n,
yER+

® However, targeting the largest possible demand may be a too conservative
decision.

® Maybe the largest possible demand value occurs with probability less than
0.1% while we would face a moderate demand level with proability in most
cases.



Chance-constrained programs

® |et us consider

min  hy
st. P[y>b]>0.95
y (S R+.

® This optimization model is called a chance-constrained program

® Note that the constraint requires that we satisfy the stochastic demand
with at least 95% chance.

® \We might not satisfy the demand in some cases, but as long as the failure
probability is at most 5%, we hare happy.



Chance-constrained programs

® In fact, the chance-constrained program can be reformulated as an integer
program.

® Note that
Py > b] > 0.95

is equivalent to
Py < b] < 0.05.

® Moreover,
Ply<bl=> pi-1ly < b]
i=1

where

1]y < b = 1, ify<b,
Y e 0, otherwise.



Chance-constrained programs

® let
S {07 if the demand for scenario / is satisfied,

1, otherwise.
® Basically, we use the binary variable z; to model the indicator function
1[y < bi].
® Then the chance-constrained program can be reformulated as the
following integer program.

min  hy
st. y+bizz>bi, i=1...,n,
n
Zp,'z,' S 0.05,
i=1

y €Ry,z€{0,1}".



Binary mixing set

The solution set of this model
{(y,z) eRx{0,1}": y+bizi>b;, i=1,...,n}

is called the binary mixing set.
® The convex hull of the mixing set is also well-understood.
Let us define a function f : {0,1}" — R as

f(z) = max{bi(1—z):i€{l,...,n}}.
® Note that the binary mixing set can be equivalently written as

Qr={(y,2) eRx{0,1}": y > f(2)}.



Binary mixing set

Lemma

The function f : {0,1}" — R with f(z) = max{bj(l —z):i € {l,...,n}} is
submodular.



Binary mixing set

Based on Lemma 4, we may deduce the following approach to solve the
chance-constrained program.

@ We solve the LP relaxation of the integer programming formulation.

@ If the current solution (y, z) & conv(Q¥), then we separate an inequality
based on the greedy algorithm of Theorem 2.



