Lecture 9: submodular function minimization and chance-constrained programming

Dabeen Lee

Industrial and Systems Engineering, KAIST

2025 Winter Lecture Series on Combinatorial Optimization

January 16, 2025

Outline

- Submodular functions
- Submodular function minimization
- Chance-constrained programs

• Let E be a set of elements. We say that a set function $f: 2^E \to \mathbb{R}$ is submodular if it satisfies

$$
f(A) + f(B) \ge f(A \cup B) + f(A \cap B)
$$

for all $A, B \subseteq E$.

- An equivalent definition of submodularity for set functions is the notion of diminishing marginal returns property.
- That is, a set function $f: 2^E \to \mathbb{R}$ is submodular if and only if it satisfies

$$
f(A \cup \{e\}) - f(A) \geq f(B \cup \{e\}) - f(B)
$$

for all $A \subseteq B \subseteq E$ and $e \notin B$.

Examples

• Linear function: For any $w \in \mathbb{R}^{|E|}$, f with

$$
f(S) = \sum_{e \in S} w_e
$$

for $S \subseteq E$ is submodular.

 \bullet Concave utility: For any concave function $g:\mathbb{R}_+\to\mathbb{R}$ and $w\in\mathbb{R}_+^{|E|}$, f with

$$
f(S) = g(\sum_{e \in S} w_e)
$$

for $S \subseteq E$ is a submodular function.

• Coverage function: Suppose that each element $e \in E$ corresponds to some area A_e . Then f with

$$
f(S) = |\cup_{e \in S} A_e|
$$

for $S \subseteq E$ is submodular.

Examples

• Success probability: Let $p_e \in [0,1]$ for $e \in E$. Then f with

$$
f(S) = 1 - \prod_{e \in S} (1 - p_e)
$$

for $S \subseteq E$ is submodular.

• Graph cuts: Let $G = (V, E)$ be an undirected graph. Then f with

$$
f(S)=|\delta(S)|
$$

for $S \subset V$ is submodular, where $\delta(S)$ is the set of edges crossing the partition $(S, V \setminus S)$ of the vertex set V.

- Directed cuts: Let $D = (N, A)$ be a directed graph. Then f with $f(S) = |\delta^+(S)|$ for $S \subseteq V$ is submodular, where $\delta^+(S)$ is the set of arcs leaving S.
- Matroid rank functions: Let $M = (E, \mathcal{I})$ be a matroid. Then its rank function r given by $r(S) = \max\{|A| : A \in \mathcal{I}\}\)$ for $S \subseteq E$ is submodular.

- As this wide range of examples suggests, submodular functions provide a useful framework for modeling discrete-valued decision variables.
- For utility, coverage, and success probability functions, the problem of maximizing a submodular function is relevant.
- For cut functions, submodular function minimization is relevant.
- As a first step, in this lecture, we consider the minimization problem.

- Let us consider the problem of minimizing a submodular function.
- Given a submodular function $f: 2^E \to \mathbb{R}$ over the element set E , we consider

minimize $f(S)$ subject to $S \subseteq E$. (1)

- \bullet Since f is a set function, we can interpret the function over the set of binary vectors $\{0,1\}^{|E|}$.
- Any $S \subseteq E$ can be represented by its characteristic vector $1_S \in \{0,1\}^{|E|}$ that takes 1 for the elements in S and 0 for the other elements.
- Similarly, any vector $z \in \{0,1\}^{|E|}$ corresponds to a subset $S_z = \{e \in E : z_e = 1\}.$
- Then, with a slight abuse of notation, we may define

$$
f(z):=f(S_z).
$$

• Then the problem can be rewritten as the following binary optimization problem:

> minimize $f(z)$ subject to $z \in \{0,1\}^{|E|}$ (2)

• Note that with an auxiliary variable y to make the objective linear, (2) is equivalent to

minimize y subject to $(y, z) \in Q_f$ (3)

where Q_f is the **epigraph** of f given by

$$
Q_f=\left\{(y,z)\in\mathbb{R}\times\{0,1\}^{|E|}:\ y\geq f(z)\right\}.
$$

• Since y is a linear function, it follows that (3) is equivalent to

minimize y subject to
$$
(y, z) \in conv(Q_f)
$$
 (4)

where $conv(Q_f)$ is the convex hull of Q_f .

• By the equivalence between optimization and separation, the optimization problem [\(4\)](#page-7-1) is equivalent to separation over $conv(Q_f)$.

- Next we will characterize the convex hull of Q_f and provide a linear description of it.
- \bullet To do so, we need to define the extended polymatroid of f , given by

$$
EP_f := \left\{ \pi \in \mathbb{R}^{|E|} : \sum_{e \in S} \pi_e \leq f(S) \text{ for all } S \subseteq E \right\}.
$$

- Note that the extended polymatroid is nonempty if and only if $f(\emptyset) \geq 0$.
- In general, a submodular function f does not have to satisfy $f(\emptyset) \geq 0$.
- Nevertheless, we may take $f f(\emptyset)$, instead of f, which is submodular if f is submodular.
- Henceforth, we assume that $f(\emptyset) = 0$.

• Having defined the extended polymatroid, we are ready to characterize the convex hull of Q_f .

Theorem (Edmonds, Lovász)

Let $f: \{0,1\}^{|E|} \to \mathbb{R}$ be a submodular function with $f(\emptyset) = 0$, and let Q_f be its epigraph. Then

$$
\operatorname{conv}(Q_f) = \left\{ (y, z) \in \mathbb{R} \times [0, 1]^{|\mathcal{E}|} : y \geq \pi^{\top} z \quad \text{for all } \pi \in \mathcal{EP}_f \right\}.
$$

• Given $(y,z)\in \mathbb{R}\times [0,1]^{|E|}$, deciding whether $(y,z)\in \operatorname{conv}(Q_f)$ boils down to computing the maximum value of $z^\top \pi$ over all $\pi \in EP_f.$

• Edmonds proved that there is a greedy algorithm for computing the maximum of a linear function over the extended polymatroid EP_f .

Theorem (Edmonds)

Let $z \in \mathbb{R}^{|E|}$. Then the linear program

$$
\max\left\{\sum_{e\in E} z_e \pi_e: \ \pi \in EP_f\right\} \tag{P}
$$

can be solved in $O(|E| \log |E|)$ time by a greedy algorithm.

- Recall that the equivalence of optimization and separation is based on the ellipsoid method.
- Grötschel, Lovász, and Schrijver showed that the algorithm can be turned into a strongly polynomial time algorithm.

Theorem (Grötschel, Lovász, and Schrijver)

Let $f: 2^E \to \mathbb{R}$ be submodular over the element set E. Then one can find $S \subseteq E$ minimizing f in strongly polynomial time.

• Later, Iwata, Fleischer, and Fujishige and Schrijver independently provided combinatorial algorithms for submodular function minimization.

- We consider an inventory planning problem.
- A retail store prepares some inventory of items before the market opens.
- The retail store can observe the actual demand after the market opens.

- y : the amount of items that the retail store prepares before the market opens.
- \bullet h: the unit cost of preparing items before the market opens.
- b: the stochastic **demand** for items.

Assumption

- There are *n* possibilities, given by b_1, \ldots, b_n , for the stochastic demand *b*.
- Historically, the demand is equal to value b_i with probability p_i , i.e.,

$$
\mathbb{P}\left[b=b_i\right]=p_i.
$$

- Here, $p_1, \ldots, p_n \geq 0$ and $\sum_{i=1}^n p_i = 1$.
- We assume that the probability distribution is known to the decision-maker.

Each case of demand realization is called a scenario

Assumption

- There are *n* possibilities, given by b_1, \ldots, b_n , for the stochastic demand *b*.
- Historically, the demand is equal to value b_i with probability p_i , i.e.,

$$
\mathbb{P}\left[b=b_i\right]=p_i.
$$

- Here, $p_1, \ldots, p_n \geq 0$ and $\sum_{i=1}^n p_i = 1$.
- We assume that the probability distribution is known to the decision-maker.

Each case of demand realization is called a scenario

- The purchase decision is based on the distribution of the stochastic demand.
- The first attempt is to prepare again all possible scenarios.
- Basically, we target the largest possible demand by solving

min hv s.t. $y > b_i$, $i = 1, ..., n$, $v \in \mathbb{R}_+$.

- However, targeting the largest possible demand may be a too conservative decision.
- Maybe the largest possible demand value occurs with probability less than 0.1% while we would face a moderate demand level with proability in most cases.

• Let us consider

$$
\begin{array}{ll}\n\text{min} & hy \\
\text{s.t.} & \mathbb{P}\left[y \geq b\right] \geq 0.95 \\
& y \in \mathbb{R}_+.\n\end{array}
$$

- This optimization model is called a chance-constrained program
- Note that the constraint requires that we satisfy the stochastic demand with at least 95% chance.
- We might not satisfy the demand in some cases, but as long as the failure probability is at most 5%, we hare happy.

- In fact, the chance-constrained program can be reformulated as an integer program.
- Note that

 $\mathbb{P} \left[\mathsf{y} \geq \mathsf{b} \right] \geq 0.95$

is equivalent to

 $\mathbb{P}[y < b] \leq 0.05$.

• Moreover,

$$
\mathbb{P}\left[y < b\right] = \sum_{i=1}^n p_i \cdot 1 \left[y < b_i\right]
$$

where

$$
1\left[y < b_i\right] = \begin{cases} 1, & \text{if } y < b_i, \\ 0, & \text{otherwise.} \end{cases}
$$

• Let

$$
z_i = \begin{cases} 0, & \text{if the demand for scenario } i \text{ is satisfied,} \\ 1, & \text{otherwise.} \end{cases}
$$

- Basically, we use the binary variable z_i to model the indicator function $1 [y < b_i].$
- Then the chance-constrained program can be reformulated as the following integer program.

min
$$
hy
$$

\ns.t. $y + b_i z_i \ge b_i$, $i = 1, ..., n$,
\n
$$
\sum_{i=1}^n p_i z_i \le 0.05
$$
\n
$$
y \in \mathbb{R}_+, z \in \{0, 1\}^n.
$$

Binary mixing set

• The solution set of this model

 $\{(y, z) \in \mathbb{R} \times \{0, 1\}^n : y + b_i z_i \geq b_i, \quad i = 1, \ldots, n\}$

is called the binary mixing set.

- The convex hull of the mixing set is also well-understood.
- Let us define a function $f: \{0,1\}^n \to \mathbb{R}$ as

$$
f(z) = \max \{b_i(1-z_i) : i \in \{1,\ldots,n\}\}.
$$

• Note that the binary mixing set can be equivalently written as

$$
Q_f = \{(y, z) \in \mathbb{R} \times \{0, 1\}^n : y \ge f(z)\}.
$$

Binary mixing set

Lemma

The function $f: \{0,1\}^n \to \mathbb{R}$ with $f(z) = \max \{b_i(1-z_i) : i \in \{1,\ldots,n\}\}$ is submodular.

Based on Lemma [4,](#page-21-0) we may deduce the following approach to solve the chance-constrained program.

- **1** We solve the LP relaxation of the integer programming formulation.
- **2** If the current solution $(y, z) \notin \text{conv}(Q_f)$, then we separate an inequality based on the greedy algorithm of Theorem 2.