
Lecture 9: submodular function minimization and
chance-constrained programming

Dabeen Lee

Industrial and Systems Engineering, KAIST

2025 Winter Lecture Series on Combinatorial Optimization

January 16, 2025

1/23

Outline

• Submodular functions

• Submodular function minimization

• Chance-constrained programs

2/23

Submodular functions

• Let E be a set of elements. We say that a set function f : 2E → R is
submodular if it satisfies

f (A) + f (B) ≥ f (A ∪ B) + f (A ∩ B)

for all A,B ⊆ E .

• An equivalent definition of submodularity for set functions is the notion of
diminishing marginal returns property.

• That is, a set function f : 2E → R is submodular if and only if it satisfies

f (A ∪ {e})− f (A) ≥ f (B ∪ {e})− f (B)

for all A ⊆ B ⊆ E and e 6∈ B.

3/23

Submodular functions

Examples

• Linear function: For any w ∈ R|E |, f with

f (S) =
∑
e∈S

we

for S ⊆ E is submodular.

• Concave utility: For any concave function g : R+ → R and w ∈ R|E |
+ , f

with
f (S) = g(

∑
e∈S

we)

for S ⊆ E is a submodular function.

• Coverage function: Suppose that each element e ∈ E corresponds to
some area Ae . Then f with

f (S) = | ∪e∈S Ae |

for S ⊆ E is submodular.

4/23

Submodular functions

Examples

• Success probability: Let pe ∈ [0, 1] for e ∈ E . Then f with

f (S) = 1−
∏
e∈S

(1− pe)

for S ⊆ E is submodular.

• Graph cuts: Let G = (V ,E) be an undirected graph. Then f with

f (S) = |δ(S)|

for S ⊆ V is submodular, where δ(S) is the set of edges crossing the
partition (S ,V \ S) of the vertex set V .

• Directed cuts: Let D = (N,A) be a directed graph. Then f with
f (S) = |δ+(S)| for S ⊆ V is submodular, where δ+(S) is the set of arcs
leaving S .

• Matroid rank functions: Let M = (E , I) be a matroid. Then its rank
function r given by r(S) = max{|A| : A ∈ I} for S ⊆ E is submodular.

5/23

Submodular functions

• As this wide range of examples suggests, submodular functions provide a
useful framework for modeling discrete-valued decision variables.

• For utility, coverage, and success probability functions, the problem of
maximizing a submodular function is relevant.

• For cut functions, submodular function minimization is relevant.

• As a first step, in this lecture, we consider the minimization problem.

6/23

Submodular function minimization

• Let us consider the problem of minimizing a submodular function.

• Given a submodular function f : 2E → R over the element set E , we
consider

minimize f (S) subject to S ⊆ E . (1)

• Since f is a set function, we can interpret the function over the set of
binary vectors {0, 1}|E |.

• Any S ⊆ E can be represented by its characteristic vector 1S ∈ {0, 1}|E |

that takes 1 for the elements in S and 0 for the other elements.

• Similarly, any vector z ∈ {0, 1}|E | corresponds to a subset
Sz = {e ∈ E : ze = 1}.
• Then, with a slight abuse of notation, we may define

f (z) := f (Sz).

• Then the problem can be rewritten as the following binary optimization
problem:

minimize f (z) subject to z ∈ {0, 1}|E |. (2)

7/23

Submodular function minimization

• Note that with an auxiliary variable y to make the objective linear, (2) is
equivalent to

minimize y subject to (y , z) ∈ Qf (3)

where Qf is the epigraph of f given by

Qf =
{

(y , z) ∈ R× {0, 1}|E | : y ≥ f (z)
}
.

• Since y is a linear function, it follows that (3) is equivalent to

minimize y subject to (y , z) ∈ conv(Qf) (4)

where conv(Qf) is the convex hull of Qf .

• By the equivalence between optimization and separation, the optimization
problem (4) is equivalent to separation over conv(Qf).

8/23

Submodular function minimization

• Next we will characterize the convex hull of Qf and provide a linear
description of it.

• To do so, we need to define the extended polymatroid of f , given by

EPf :=

{
π ∈ R|E | :

∑
e∈S

πe ≤ f (S) for all S ⊆ E

}
.

• Note that the extended polymatroid is nonempty if and only if f (∅) ≥ 0.

• In general, a submodular function f does not have to satisfy f (∅) ≥ 0.

• Nevertheless, we may take f − f (∅), instead of f , which is submodular if f
is submodular.

• Henceforth, we assume that f (∅) = 0.

9/23

Submodular function minimization

• Having defined the extended polymatroid, we are ready to characterize the
convex hull of Qf .

Theorem (Edmonds, Lovász)

Let f : {0, 1}|E | → R be a submodular function with f (∅) = 0, and let Qf be
its epigraph. Then

conv(Qf) =
{

(y , z) ∈ R× [0, 1]|E | : y ≥ π>z for all π ∈ EPf

}
.

• Given (y , z) ∈ R× [0, 1]|E |, deciding whether (y , z) ∈ conv(Qf) boils
down to computing the maximum value of z>π over all π ∈ EPf .

10/23

Submodular function minimization

• Edmonds proved that there is a greedy algorithm for computing the
maximum of a linear function over the extended polymatroid EPf .

Theorem (Edmonds)

Let z ∈ R|E |. Then the linear program

max

{∑
e∈E

zeπe : π ∈ EPf

}
(P)

can be solved in O(|E | log |E |) time by a greedy algorithm.

11/23

Submodular function minimization

• Recall that the equivalence of optimization and separation is based on the
ellipsoid method.

• Grötschel, Lovász, and Schrijver showed that the algorithm can be turned
into a strongly polynomial time algorithm.

Theorem (Grötschel, Lovász, and Schrijver)

Let f : 2E → R be submodular over the element set E . Then one can find
S ⊆ E minimizing f in strongly polynomial time.

• Later, Iwata, Fleischer, and Fujishige and Schrijver independently provided
combinatorial algorithms for submodular function minimization.

12/23

Inventory planning

• We consider an inventory planning problem.

• A retail store prepares some inventory of items before the market opens.

• The retail store can observe the actual demand after the market opens.

13/23

Inventory planning

• y : the amount of items that the retail store prepares before the market
opens.

• h: the unit cost of preparing items before the market opens.

• b: the stochastic demand for items.

14/23

Inventory planning

Assumption

• There are n possibilities, given by b1, . . . , bn, for the stochastic demand b.

• Historically, the demand is equal to value bi with probability pi , i.e.,

P [b = bi] = pi .

• Here, p1, . . . , pn ≥ 0 and
∑n

i=1 pi = 1.

• We assume that the probability distribution is known to the
decision-maker.

Each case of demand realization is called a scenario

15/23

Inventory planning

Assumption

• There are n possibilities, given by b1, . . . , bn, for the stochastic demand b.

• Historically, the demand is equal to value bi with probability pi , i.e.,

P [b = bi] = pi .

• Here, p1, . . . , pn ≥ 0 and
∑n

i=1 pi = 1.

• We assume that the probability distribution is known to the
decision-maker.

Each case of demand realization is called a scenario

16/23

Chance-constrained programs

• The purchase decision is based on the distribution of the stochastic
demand.

• The first attempt is to prepare again all possible scenarios.

• Basically, we target the largest possible demand by solving

min hy

s.t. y ≥ bi , i = 1, . . . , n,

y ∈ R+.

• However, targeting the largest possible demand may be a too conservative
decision.

• Maybe the largest possible demand value occurs with probability less than
0.1% while we would face a moderate demand level with proability in most
cases.

17/23

Chance-constrained programs

• Let us consider

min hy

s.t. P [y ≥ b] ≥ 0.95

y ∈ R+.

• This optimization model is called a chance-constrained program

• Note that the constraint requires that we satisfy the stochastic demand
with at least 95% chance.

• We might not satisfy the demand in some cases, but as long as the failure
probability is at most 5%, we hare happy.

18/23

Chance-constrained programs

• In fact, the chance-constrained program can be reformulated as an integer
program.

• Note that
P [y ≥ b] ≥ 0.95

is equivalent to
P [y < b] ≤ 0.05.

• Moreover,

P [y < b] =
n∑

i=1

pi · 1 [y < bi]

where

1 [y < bi] =

{
1, if y < bi ,

0, otherwise.

19/23

Chance-constrained programs

• Let

zi =

{
0, if the demand for scenario i is satisfied,

1, otherwise.

• Basically, we use the binary variable zi to model the indicator function
1 [y < bi].

• Then the chance-constrained program can be reformulated as the
following integer program.

min hy

s.t. y + bizi ≥ bi , i = 1, . . . , n,
n∑

i=1

pizi ≤ 0.05,

y ∈ R+, z ∈ {0, 1}n.

20/23

Binary mixing set

• The solution set of this model

{(y , z) ∈ R× {0, 1}n : y + bizi ≥ bi , i = 1, . . . , n}

is called the binary mixing set.

• The convex hull of the mixing set is also well-understood.

• Let us define a function f : {0, 1}n → R as

f (z) = max {bi (1− zi) : i ∈ {1, . . . , n}} .

• Note that the binary mixing set can be equivalently written as

Qf = {(y , z) ∈ R× {0, 1}n : y ≥ f (z)} .

21/23

Binary mixing set

Lemma

The function f : {0, 1}n → R with f (z) = max {bi (1− zi) : i ∈ {1, . . . , n}} is
submodular.

22/23

Binary mixing set

Based on Lemma 4, we may deduce the following approach to solve the
chance-constrained program.

1 We solve the LP relaxation of the integer programming formulation.

2 If the current solution (y , z) 6∈ conv(Qf), then we separate an inequality
based on the greedy algorithm of Theorem 2.

23/23

