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Outline

In this lecture, we consider the problem of minimizing a submodular function. We characterize the
convex hull of the epigraph of a submodular function, based on the extended polymatroid. This
gives rise to a separation-based algorithm for submodular function minimization. As an application,
we propose a branch-and-cut framework for solving a chance-constrained program.

1 Submodular functions

Let E be a set of elements. We say that a set function f : 2% — R is submodular if it satisfies
fLA+ f(B) > f(AUB)+ f(ANB) forall A,BCE.

An equivalent definition of submodularity for set functions is the notion of diminishing marginal
returns property. That is, a set function f : 2¥ — R is submodular if and only if it satisfies

fl(Au{e}) — f(A) > f(BU{e}) — f(B) foral ACBC Eande¢ B.

Many functions that arise in discrete and combinatorial optimization problems turn out to be
submodular. Let us provide a few representative examples below.

e Linear function: For any w € RIPl, f with f(S) = Y ecg We for S C E is submodular.

e Concave utility: For any concave function g : Ry — R and w € ]R‘f', f with f(S5) =
(> _ecgwe) for S C E is a submodular function.

e Coverage function: Suppose that each element e € E corresponds to some area A.. Then
f with f(S) = | Uees Ae| for S C E is submodular.

e Success probability: Let p. € [0,1] for e € E. Then f with f(S) =1 —[[.cq(1 — pe) for
S C FE is submodular.

e Graph cuts: Let G = (V, E) be an undirected graph. Then f with f(S) = |d(S)| for S C V
is submodular, where §(S) is the set of edges crossing the partition (S,V \ S) of the vertex
set V.

e Directed cuts: Let D = (N, A) be a directed graph. Then f with f(S) = [67(S)| for S CV
is submodular, where 67 (5) is the set of arcs leaving S.

e Matroid rank functions: Let M = (E,7) be a matroid. Then its rank function r given
by 7(S) = max{|A| : A € I} for S C E is submodular.

As this wide range of examples suggests, submodular functions provide a useful framework for
modeling discrete-valued decision variables. For utility, coverage, and success probability functions,
the problem of maximizing a submodular function is relevant. For cut functions, submodular
function minimization is relevant. As a first step, in this lecture, we consider the minimization
problem.



2 Submodular function minimization

Let us consider the problem of minimizing a submodular function. Given a submodular function
f:2F — R over the element set E, we consider

minimize f(S) subjectto S CE. (9.1)

Since f is a set function, we can interpret the function over the set of binary vectors {0, 1}|E I, To
be more precise, any S C E can be represented by its characteristic vector 1g € {0, 1}‘E | that takes
1 for the elements in S and 0 for the other elements. Similarly, any vector z € {0, 1}|E | corresponds
to a subset S, = {e € E : ze = 1}. Then, with a slight abuse of notation, we may define

f(z) = f(S).
In this case, (9.1) can be rewritten as the following binary optimization problem:
minimize f(z) subject to z e {0,1}F], (9.2)
Note that with an auxiliary variable y to make the objective linear, (9.2) is equivalent to
minimize y subject to (y,z) € Qf (9.3)

where @ is the epigraph of f given by

Q= {(y,z) eRx {0,1}Fl: 4> f(z)}
Since y is a linear function, it follows that (9.3) is equivalent to
minimize y subject to (y,2) € conv(Qy) (9.4)
where conv(Qy) is the convex hull of Q. By the equivalence between optimization and separation,

the optimization problem (9.4) is equivalent to separation over conv(Qy).

Next we will characterize the convex hull of ()5 and provide a linear description of it. To do so, we
need to define the extended polymatroid of f, given by

EPy:= {w eRIFl: Y r, < £(S) forall §C E} :

eeS

Note that the extended polymatroid is nonempty if and only if f(@) > 0. In general, a submodular
function f does not have to satisfy f()) > 0. Nevertheless, we may take f — f()), instead of f,
which is submodular if f is submodular. Henceforth, we assume that f()) = 0. Having defined the
extended polymatroid, we are ready to characterize the convex hull of Q.

Theorem 9.1 (Edmonds [3], Lovasz [6]). Let f : {0,1}/Fl — R be a submodular function with
f(0) =0, and let Q¢ be its epigraph. Then

conv(Qy) = {(y,z) eRx[0,1)F: y>n"z foralre EPf}.

Given (y,2) € R x [0,1]/F], deciding whether (y,z) € conv(Q) boils down to computing the
maximum value of z' 7 over all 7 € EP;. Edmonds [3] proved that there is a greedy algorithm for
computing the maximum of a linear function over the extended polymatroid EPy.
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Theorem 9.2 (Edmonds [3]). Let z € RIEl. Then the linear program
max {Z ZeTe: T E EPf} (P)
eck
can be solved in O(|E|log|E|) time by a greedy algorithm.

Proof. We provide an algorithmic proof. If z. < 0 for some e € E, then the linear program is

unbounded, as we can set m, = —oo. Thus we may assume that z. > 0 for all e € E. Let n
denote the number of elements in £. Then we may enumerate the elements of E by eq,...,e,. Let
o:{1,...,n} = {1,...,n} denote a permutation so that

Then we define a sequence of sets S; C S C --- C S, given by

S = {60'(1)7 SR ea(i)}‘

Let @ € RE be the vector whose coordinates are given by

_ {f(SUu)) ifi=1
O Sow) = (Soqn) ifi>2.

Next, we take the dual of (P):

Z ys = ze forallee E,
min Z ysf(S): SCE:wees . (D)
SCE ys >0 forall SCFE

Let y € R2” be the vector whose coordinates are

Zea(i) - 260(i+1> if S = S’i; 1 S n—1
Ys = zo‘(n) if § = Sn

0 otherwise

We leave it as an exercise to show that  and gy are optimal feasible solutions to (P) and (D),
respectively. Note that the bottleneck of the algorithm is the ordering part, which can be done in
O(|V|log|V]) time. O

Recall that the equivalence of optimization and separation is based on the ellipsoid method.
Grotschel, Lovész, and Schrijver [5] showed that the algorithm can be turned into a strongly
polynomial time algorithm.

Theorem 9.3 (Grotschel, Lovész, and Schrijver [5]). Let f : 28 — R be submodular over the
element set E. Then one can find S C E minimizing f in strongly polynomial time.

Later, Iwata, Fleischer, and Fujishige [8] and Schrijver [9] independently provided combinatorial
algorithms for submodular function minimization.



3 Chance-constrained programs

We consider an inventory planning problem. A retail store prepares some inventory of items before
the market opens. Therefore, the decision-maker has to prepare enough quantity of items before
the market opens, based on the distribution of the stochastic demand.

e y: the amount of items that the retail store prepares before the market opens.
e h: the unit cost of preparing items before the market opens.

e b: the stochastic demand for items.

We assume that there are n possibilities, given by by, ..., b,, for the stochastic demand b. Histori-
cally, the demand is equal to value b; with probability p;, i.e.,

Here, pi1,...,p, > 0 and )" | p; = 1. We assume that the probability distribution is known to the
decision-maker.

The first attempt is to prepare again all possible scenarios. Basically, we target the largest possible
demand by solving

min hy
st. y>b, i=1,...,n,
Yy < R+.

However, targeting the largest possible demand may be a too conservative decision. Maybe the
largest possible demand value occurs with probability less than 0.1% while we would face a moderate
demand level with proability in most cases. How do we take this into account? Let us consider

min hy
st. Ply>0]>0095
Yy < R+.

This optimization model is called a chance-constrained program. Note that the constraint
requires that we satisfy the stochastic demand with at least 95% chance. We might not satisfy the
demand in some cases, but as long as the failure probability is at most 5%, we hare happy.

In fact, the chance-constrained program can be reformulated as an integer program. Note that

Ply > b] > 0.95
is equivalent to
Py < b] < 0.05.
Moreover,
Ply <b] = Z pi - 1y < b
where

1, ify<by,
1 < bi =
by ] { 0, otherwise.



To model 1 [y < b;], we use a binary variable z; € {0,1} with

{0, if the demand for scenario ¢ is satisfied,
Z; =

1, otherwise.
Then the chance-constrained program can be reformulated as the following integer program.

min hy

st. y+bz >0, i=1,...,n,

n
Z pizi < 0.05,
i—1

yeRy, ze{0,1}"
Note that any feasible solution (y, z) to the chance-constrained program belongs to
{(y,2) e Rx{0,1}": y+biz; >b;, i=1,...,n}.
We refer to the set as the binary mixing set [7]. Let us define a function f: {0,1}" — R as
f(z) =max{b;j(1 —z;):ie{l,...,n}}.
Note that the binary mixing set can be equivalently written as
Qr ={(y,2) e Rx{0,1}": y > f(2)}.

Lemma 9.4. The function f :{0,1}" — R with f(z) = max{b;j(1 —z;):i€{1,...,n}} is sub-
modular.

Proof. We may define the equivalent set function representation of f, given by f(S) = f(1g). Then
f(S) = max{b;: i€ S}
where S = {1,...,n}\ S. Let S,T C {1,...,n}. Then we have
f(SUT)=max{b;: i€ SNT} and f(SNT)=max{b;: i€ SUT}.
We may observe that
max{b; : i € SNT}+max{b;: i € SUT} < max{b;: i € S} +max{b;: i € T},
which shows that f(SUT) + f(SNT) < f(S) + f(T), establishing the submodularity of f. O

Based on Lemma 9.4, we may deduce the following approach to solve the chance-constrained pro-
gram.

1. We solve the LP relaxation of the integer programming formulation.

2. If the current solution (y,z) & conv(Q), then we separate an inequality based on the greedy
algorithm of Theorem 9.2.
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