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Outline

In this lecture, we consider the problem of minimizing a submodular function. We characterize the
convex hull of the epigraph of a submodular function, based on the extended polymatroid. This
gives rise to a separation-based algorithm for submodular function minimization. As an application,
we propose a branch-and-cut framework for solving a chance-constrained program.

1 Submodular functions

Let E be a set of elements. We say that a set function f : 2E → R is submodular if it satisfies

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B) for all A,B ⊆ E.

An equivalent definition of submodularity for set functions is the notion of diminishing marginal
returns property. That is, a set function f : 2E → R is submodular if and only if it satisfies

f(A ∪ {e})− f(A) ≥ f(B ∪ {e})− f(B) for all A ⊆ B ⊆ E and e 6∈ B.

Many functions that arise in discrete and combinatorial optimization problems turn out to be
submodular. Let us provide a few representative examples below.

• Linear function: For any w ∈ R|E|, f with f(S) =
∑

e∈S we for S ⊆ E is submodular.

• Concave utility: For any concave function g : R+ → R and w ∈ R|E|+ , f with f(S) =
g(
∑

e∈S we) for S ⊆ E is a submodular function.

• Coverage function: Suppose that each element e ∈ E corresponds to some area Ae. Then
f with f(S) = | ∪e∈S Ae| for S ⊆ E is submodular.

• Success probability: Let pe ∈ [0, 1] for e ∈ E. Then f with f(S) = 1 −
∏
e∈S(1 − pe) for

S ⊆ E is submodular.

• Graph cuts: Let G = (V,E) be an undirected graph. Then f with f(S) = |δ(S)| for S ⊆ V
is submodular, where δ(S) is the set of edges crossing the partition (S, V \ S) of the vertex
set V .

• Directed cuts: Let D = (N,A) be a directed graph. Then f with f(S) = |δ+(S)| for S ⊆ V
is submodular, where δ+(S) is the set of arcs leaving S.

• Matroid rank functions: Let M = (E, I) be a matroid. Then its rank function r given
by r(S) = max{|A| : A ∈ I} for S ⊆ E is submodular.

As this wide range of examples suggests, submodular functions provide a useful framework for
modeling discrete-valued decision variables. For utility, coverage, and success probability functions,
the problem of maximizing a submodular function is relevant. For cut functions, submodular
function minimization is relevant. As a first step, in this lecture, we consider the minimization
problem.
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2 Submodular function minimization

Let us consider the problem of minimizing a submodular function. Given a submodular function
f : 2E → R over the element set E, we consider

minimize f(S) subject to S ⊆ E. (9.1)

Since f is a set function, we can interpret the function over the set of binary vectors {0, 1}|E|. To
be more precise, any S ⊆ E can be represented by its characteristic vector 1S ∈ {0, 1}|E| that takes
1 for the elements in S and 0 for the other elements. Similarly, any vector z ∈ {0, 1}|E| corresponds
to a subset Sz = {e ∈ E : ze = 1}. Then, with a slight abuse of notation, we may define

f(z) := f(Sz).

In this case, (9.1) can be rewritten as the following binary optimization problem:

minimize f(z) subject to z ∈ {0, 1}|E|. (9.2)

Note that with an auxiliary variable y to make the objective linear, (9.2) is equivalent to

minimize y subject to (y, z) ∈ Qf (9.3)

where Qf is the epigraph of f given by

Qf =
{

(y, z) ∈ R× {0, 1}|E| : y ≥ f(z)
}
.

Since y is a linear function, it follows that (9.3) is equivalent to

minimize y subject to (y, z) ∈ conv(Qf ) (9.4)

where conv(Qf ) is the convex hull of Qf . By the equivalence between optimization and separation,
the optimization problem (9.4) is equivalent to separation over conv(Qf ).

Next we will characterize the convex hull of Qf and provide a linear description of it. To do so, we
need to define the extended polymatroid of f , given by

EPf :=

{
π ∈ R|E| :

∑
e∈S

πe ≤ f(S) for all S ⊆ E

}
.

Note that the extended polymatroid is nonempty if and only if f(∅) ≥ 0. In general, a submodular
function f does not have to satisfy f(∅) ≥ 0. Nevertheless, we may take f − f(∅), instead of f ,
which is submodular if f is submodular. Henceforth, we assume that f(∅) = 0. Having defined the
extended polymatroid, we are ready to characterize the convex hull of Qf .

Theorem 9.1 (Edmonds [3], Lovász [6]). Let f : {0, 1}|E| → R be a submodular function with
f(∅) = 0, and let Qf be its epigraph. Then

conv(Qf ) =
{

(y, z) ∈ R× [0, 1]|E| : y ≥ π>z for all π ∈ EPf
}
.

Given (y, z) ∈ R × [0, 1]|E|, deciding whether (y, z) ∈ conv(Qf ) boils down to computing the
maximum value of z>π over all π ∈ EPf . Edmonds [3] proved that there is a greedy algorithm for
computing the maximum of a linear function over the extended polymatroid EPf .
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Theorem 9.2 (Edmonds [3]). Let z ∈ R|E|. Then the linear program

max

{∑
e∈E

zeπe : π ∈ EPf

}
(P )

can be solved in O(|E| log |E|) time by a greedy algorithm.

Proof. We provide an algorithmic proof. If ze < 0 for some e ∈ E, then the linear program is
unbounded, as we can set πe = −∞. Thus we may assume that ze ≥ 0 for all e ∈ E. Let n
denote the number of elements in E. Then we may enumerate the elements of E by e1, . . . , en. Let
σ : {1, . . . , n} → {1, . . . , n} denote a permutation so that

zσ(1) ≥ zσ(2) ≥ · · · ≥ zσ(n).

Then we define a sequence of sets S1 ⊆ S2 ⊆ · · · ⊆ Sn given by

Si := {eσ(1), . . . , eσ(i)}.

Let π̄ ∈ RE be the vector whose coordinates are given by

π̄ei =

{
f(Sσ(1)) if i = 1

f(Sσ(i))− f(Sσ(i−1)) if i ≥ 2.

Next, we take the dual of (P ):

min


∑
S⊆E

ySf(S) :

∑
S⊆E:e∈S

yS = ze for all e ∈ E,

yS ≥ 0 for all S ⊆ E

 . (D)

Let ȳ ∈ R2E be the vector whose coordinates are

ȳS =


zeσ(i) − zeσ(i+1)

if S = Si, i ≤ n− 1

zσ(n) if S = Sn

0 otherwise

We leave it as an exercise to show that x̄ and ȳ are optimal feasible solutions to (P ) and (D),
respectively. Note that the bottleneck of the algorithm is the ordering part, which can be done in
O(|V | log |V |) time.

Recall that the equivalence of optimization and separation is based on the ellipsoid method.
Grötschel, Lovász, and Schrijver [5] showed that the algorithm can be turned into a strongly
polynomial time algorithm.

Theorem 9.3 (Grötschel, Lovász, and Schrijver [5]). Let f : 2E → R be submodular over the
element set E. Then one can find S ⊆ E minimizing f in strongly polynomial time.

Later, Iwata, Fleischer, and Fujishige [8] and Schrijver [9] independently provided combinatorial
algorithms for submodular function minimization.
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3 Chance-constrained programs

We consider an inventory planning problem. A retail store prepares some inventory of items before
the market opens. Therefore, the decision-maker has to prepare enough quantity of items before
the market opens, based on the distribution of the stochastic demand.

• y: the amount of items that the retail store prepares before the market opens.

• h: the unit cost of preparing items before the market opens.

• b: the stochastic demand for items.

We assume that there are n possibilities, given by b1, . . . , bn, for the stochastic demand b. Histori-
cally, the demand is equal to value bi with probability pi, i.e.,

P [b = bi] = pi.

Here, p1, . . . , pn ≥ 0 and
∑n

i=1 pi = 1. We assume that the probability distribution is known to the
decision-maker.

The first attempt is to prepare again all possible scenarios. Basically, we target the largest possible
demand by solving

min hy

s.t. y ≥ bi, i = 1, . . . , n,

y ∈ R+.

However, targeting the largest possible demand may be a too conservative decision. Maybe the
largest possible demand value occurs with probability less than 0.1% while we would face a moderate
demand level with proability in most cases. How do we take this into account? Let us consider

min hy

s.t. P [y ≥ b] ≥ 0.95

y ∈ R+.

This optimization model is called a chance-constrained program. Note that the constraint
requires that we satisfy the stochastic demand with at least 95% chance. We might not satisfy the
demand in some cases, but as long as the failure probability is at most 5%, we hare happy.

In fact, the chance-constrained program can be reformulated as an integer program. Note that

P [y ≥ b] ≥ 0.95

is equivalent to
P [y < b] ≤ 0.05.

Moreover,

P [y < b] =

n∑
i=1

pi · 1 [y < bi]

where

1 [y < bi] =

{
1, if y < bi,

0, otherwise.

4



To model 1 [y < bi], we use a binary variable zi ∈ {0, 1} with

zi =

{
0, if the demand for scenario i is satisfied,

1, otherwise.

Then the chance-constrained program can be reformulated as the following integer program.

min hy

s.t. y + bizi ≥ bi, i = 1, . . . , n,
n∑
i=1

pizi ≤ 0.05,

y ∈ R+, z ∈ {0, 1}n.

Note that any feasible solution (y, z) to the chance-constrained program belongs to

{(y, z) ∈ R× {0, 1}n : y + bizi ≥ bi, i = 1, . . . , n} .

We refer to the set as the binary mixing set [7]. Let us define a function f : {0, 1}n → R as

f(z) = max {bi(1− zi) : i ∈ {1, . . . , n}} .

Note that the binary mixing set can be equivalently written as

Qf = {(y, z) ∈ R× {0, 1}n : y ≥ f(z)} .

Lemma 9.4. The function f : {0, 1}n → R with f(z) = max {bi(1− zi) : i ∈ {1, . . . , n}} is sub-
modular.

Proof. We may define the equivalent set function representation of f , given by f(S) = f(1S). Then

f(S) = max{bi : i ∈ S̄}

where S̄ = {1, . . . , n} \ S. Let S, T ⊆ {1, . . . , n}. Then we have

f(S ∪ T ) = max{bi : i ∈ S̄ ∩ T̄} and f(S ∩ T ) = max{bi : i ∈ S̄ ∪ T̄}.

We may observe that

max{bi : i ∈ S̄ ∩ T̄}+ max{bi : i ∈ S̄ ∪ T̄} ≤ max{bi : i ∈ S̄}+ max{bi : i ∈ T̄},

which shows that f(S ∪ T ) + f(S ∩ T ) ≤ f(S) + f(T ), establishing the submodularity of f .

Based on Lemma 9.4, we may deduce the following approach to solve the chance-constrained pro-
gram.

1. We solve the LP relaxation of the integer programming formulation.

2. If the current solution (y, z) 6∈ conv(Qf ), then we separate an inequality based on the greedy
algorithm of Theorem 9.2.
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