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Outline

® Matching polytope
® Ellipsoid algorithm and its consequences in combinatorial optimization

® Separation-based approach for matching



LP formulation for matching

® Recall that a maximum weight matching in a graph G = (V, E) with
weights w € R!El can be computed by solving

maximize E We Xe
eckE

subject to Z xw <1 forallueV, (1)
veVuveE

xe € {0,1} foralle € E.



LP formulation for matching

® Moreover, when G is bipartite, our approach was to take its LP relaxation

maximize E We Xe
ecE

subject to Z xw <1 forallueV, (2)
veVuveE
xe >0 forallecE.



Fractionality from an odd cycle

® Unlike the bipartite case, solving (2) when G is not bipartite does not give
us a maximum weight matching.
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Figure: factionality of the linear programming relaxation



Matching polytope

® The matching polytope of a graph G is formally defined as the convex hull
of the incidence vectors of matchings in G

® The convex hull is the set of solutions satisfying the constraints of (1).

® Hence, the matching polytope is given by

Pratching(G) = conv {X € {0, 1}“:_‘ : Z Xow <1 forall ue V} .

veViuwveE

® \We argued that the formulation (1) for the maximum weight bipartite
matching problem is equivalent to

max {Z WeXe : X € Pmatching(G)} . (3)

eckE



Matching polytope

Proposition

Let G = (V, E) be a bipartite graph. Then

Pratching(G) = {x €1 > xw<1 forallue v}.

veViuweE



Matching polytope

® For a nonbipartite graph, the example implies that the degree constraints
are not enough to characterize the matching polytope.

® \We next explain additional inequalities that are necessary to describe the
matching polytope.

® |et U C V be a subset of the vertex set with an odd number of vertices.
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Figure: odd cardinality subset



Matching polytope

® Then look at the set of edges that are fully contained in U.

® Then the following inequality is satisfied by any solution to the integer

program:
Ul -1
e < — 57—
D %<
ecE(VU)

where E(U) is the set of edges fully contained in U.

® We call this inequality an odd-set inequality.



Matching polytope

® Validity of

Z Xe,‘U‘_l

ecE(U

where E(U) is the set of edges fuIIy contained in U.



Matching polytope

® For the triangle, note that the U = {u, v, w} is an odd cardinality subset,
and the corresponding odd-set inequality is xuv + Xuw + Xuu < 1.

® Hence, imposing the odd-set inequality, we may exclude the fractional
solution (Xuv, Xuw, Xwu) = (1/2,1/2,1/2).

Theorem (Edmonds)
Let G = (V, E) be a graph, not necessarily bipartite. Then

Pmatching( G)

> xw <1 forallueV,

|E| veViuwveE
=4xe[0,1]"": Ul -
Xe < ———

ecE(VU)

for all U C V with |U| > 3 odd



Ellipsoid algorithm

® We introduce the ellipsoid algorithm.
® The problem that we consider is as follows.

Given a polyhedron P = {x € R : Ax < b},
(1) conclude that the interior of P is empty, or
(2) find a point X contained in the interior of P.

® This is a variant of the feasibility problem.



Ellipsoid algorithm

Algorithm 1 Ellipsoid algorithm

Initialize a polyhedron P = {x € RY: Ax < b} and a sufficiently large ellipsoid
E;.
fort=1,..., T do
if the center x' of ellipsoid E; satisfies Ax" < b then
Stop and conclude that the interior of P contains x*.

else
There exists some inequality o' x < 8 in the system Ax < b such that
a'xt>g.
Let E;+1 be the smallest ellipsoid containing E;N {X eRY:a’x < ﬁ}
t—t+ 1
end if

Conclude that the interior of P is empty.
end for




Ellipsoid algorithm

Theorem (Kachyan)

The ellipsoid algorithm (Algorithm 1) terminates with a correct answer if E;
and T are properly chosen.

® In fact, Kachyan showed that one can choose E; and T so that their
encoding sizes are polynomially bounded, in which case Algorithm 1 runs
in polynomial time.



Ellipsoid algorithm

® The important part is that the ellipsoid algorithm can be turned into a

polynomial algorithm for the problem of optimizing a linear function over
P.

® The idea is based on binary search.

e Basically, if we want to minimize a linear function ¢ x, then we consider
{xERd: Ax < b, chgv}

for varying v.



Ellipsoid algorithm

Theorem (Kachyan)

The ellipsoid algorithm (Algorithm 1) terminates with a correct answer if E;
and T are properly chosen.

® In fact, Kachyan showed that one can choose E; and T so that their
encoding sizes are polynomially bounded, in which case Algorithm 1 runs
in polynomial time.



Equivalence between optimization and separation

® Next we formally state the equivalence between optimization and
separation.

e Let P C RY be a rational polytope such that
P = conv{v',...,v"}.

® Then we say that P C R? belongs to a well-described family of rational
polyhedra if the length L of input needed to describe P satisfies d < L
and log D is bounded by a polynomial function of L, where D is the largest
numerator or denominator of the rational vectors v* for k € [n] and
he[e.

® Here, we care about the number D to bound the complexity of the
ellipsoid method.



Equivalence between optimization and separation

1. Separation Problem
Given a well-defined polyhedron P C R? and X € Q, either show that
% € P or find an inequality o' x < f3 satisfied by all x € P such that
a’x > 8.

2. Optimization Problem
Given a well-defined polyhedron P C R? and ¢ € Q¢, find x* such that

c x* = max{CTx : x € P} or show that P = ().

Theorem (Grdtschel, Lovasz, and Schrijver)

For a well-defined polyhedron P, the separation can be solved in polynomial
time if and only if the optimization problem can be solved in polynomial time.



Matching from separation

® \We solve
max {Z WeXe : X € Pmatching(G)} ,
ecE

which is given by

maximize E WeXe
ecE

subject to Z xw <1 forallueV,
veViuveE (4)

Y ox< |U|2_ L forall UC V with |U| > 3 odd,
ecE(V)

xe >0 forallecE.



Matching from separation

® Although (4) is a linear program, one issue is that the number of odd
cardinality subsets of V' can be exponential in |V/|.

® In that case, writing down all odd-set inequalities for (4) cannot be done
in polynomial time.

® Nevertheless, the optimization problem (4) is shown to be solvable in
polynomial time by the equivalence between separation and optimization.



Matching from separation

® To show that (4) can be solved in polynomial time, we show that the
separation problem over the matching polytope Pmatching(G) can be solved
in polynomial time.

* Given x € QIfl, we want to decide whether X € Pratching(G) or find an
inequality " x < J that separates X from Pratching(G)-

® For the matching polytope, we can check whether X satisfies the degree
constraints and the nonnegativity constraints in O(|V| + | E|) time.

® Hence, the question is as to whether we can decide that X satisfies the
odd-set inequalities in polynomial time.

® In fact, the separation problem can be solved in polynomial time with its
connection to the so-called minimum odd cut problem.



