Lecture 8: the matching polytope and separation

Dabeen Lee

Industrial and Systems Engineering, KAIST

2025 Winter Lecture Series on Combinatorial Optimization

January 16, 2025

Outline

- Matching polytope
- Ellipsoid algorithm and its consequences in combinatorial optimization
- Separation-based approach for matching

LP formulation for matching

• Recall that a maximum weight matching in a graph $G = (V, E)$ with weights $w \in \mathbb{R}^{|\mathcal{E}|}$ can be computed by solving

$$
\begin{array}{ll}\text{maximize} & \sum_{e \in E} w_e x_e\\ \text{subject to} & \sum_{v \in V: uv \in E} x_{uv} \le 1 \quad \text{for all } u \in V,\\ & x_e \in \{0, 1\} \quad \text{for all } e \in E. \end{array} \tag{1}
$$

LP formulation for matching

• Moreover, when G is bipartite, our approach was to take its LP relaxation

$$
\begin{array}{ll}\n\text{maximize} & \sum_{e \in E} w_e x_e \\
\text{subject to} & \sum_{v \in V: uv \in E} x_{uv} \le 1 \quad \text{for all } u \in V, \\
& x_e \ge 0 \quad \text{for all } e \in E.\n\end{array}\n\tag{2}
$$

Fractionality from an odd cycle

• Unlike the bipartite case, solving [\(2\)](#page-3-0) when G is not bipartite does not give us a maximum weight matching.

Figure: factionality of the linear programming relaxation

- The matching polytope of a graph G is formally defined as the convex hull of the incidence vectors of matchings in G
- The convex hull is the set of solutions satisfying the constraints of (1) .
- Hence, the matching polytope is given by

$$
P_{\text{matching}}(G) = \text{conv}\left\{x \in \{0,1\}^{|E|} : \sum_{v \in V: uv \in E} x_{uv} \leq 1 \text{ for all } u \in V\right\}.
$$

• We argued that the formulation (1) for the maximum weight bipartite matching problem is equivalent to

$$
\max \left\{ \sum_{e \in E} w_e x_e : x \in P_{\text{matching}}(G) \right\}.
$$
 (3)

Proposition

Let $G = (V, E)$ be a bipartite graph. Then $P_{\sf matching}(\mathcal{G}) = \bigg\{x \in [0,1]^{|E|}: \quad \sum_{\mathcal{G} \in \mathcal{G}} \bigg\}$ v∈V :uv∈E $x_{uv} \leq 1$ for all $u \in V$

 \mathcal{L} .

- For a nonbipartite graph, the example implies that the degree constraints are not enough to characterize the matching polytope.
- We next explain additional inequalities that are necessary to describe the matching polytope.
- Let $U \subseteq V$ be a subset of the vertex set with an odd number of vertices.

Figure: odd cardinality subset

- Then look at the set of edges that are fully contained in U .
- Then the following inequality is satisfied by any solution to the integer program:

$$
\sum_{e \in E(U)} x_e \leq \frac{|U|-1}{2}
$$

where $E(U)$ is the set of edges fully contained in U.

• We call this inequality an odd-set inequality.

• Validity of

$$
\sum_{e \in E(U)} x_e \leq \frac{|U|-1}{2}
$$

where $E(U)$ is the set of edges fully contained in U .

- For the triangle, note that the $U = \{u, v, w\}$ is an odd cardinality subset, and the corresponding odd-set inequality is $x_{uv} + x_{vw} + x_{wu} \leq 1$.
- Hence, imposing the odd-set inequality, we may exclude the fractional solution $(x_{uv}, x_{vw}, x_{wu}) = (1/2, 1/2, 1/2)$.

Theorem (Edmonds)

Let $G = (V, E)$ be a graph, not necessarily bipartite. Then

$$
P_{matching}(G)
$$
\n
$$
= \left\{ x \in [0,1]^{|E|} : \sum_{v \in V: uv \in E} x_{uv} \le 1 \text{ for all } u \in V, \sum_{e \in E(U)} x_e \le \frac{|U| - 1}{2} \text{ for all } U \subseteq V \text{ with } |U| \ge 3 \text{ odd} \right\}.
$$

- We introduce the ellipsoid algorithm.
- The problem that we consider is as follows.

Given a polyhedron $P = \{x \in \mathbb{R}^d : Ax \leq b\},\$ (1) conclude that the interior of P is empty, or (2) find a point \bar{x} contained in the interior of P.

• This is a variant of the feasibility problem.

Algorithm 1 Ellipsoid algorithm

Initialize a polyhedron $P = \{ \mathsf{x} \in \mathbb{R}^d : \mathsf{A} \mathsf{x} \leq \mathsf{b} \}$ and a sufficiently large ellipsoid E_1 . for $t = 1, \ldots, T$ do **if** the center x^t of ellipsoid E_t satisfies $Ax^t < b$ **then** Stop and conclude that the interior of P contains x^t . else There exists some inequality $\alpha^\top x\leq \beta$ in the system $A\mathrm{\mathsf{x}}\leq b$ such that $\alpha^{\top} x^t \geq \beta$.

Let E_{t+1} be the smallest ellipsoid containing $E_t \cap \{x \in \mathbb{R}^d : \alpha^\top x \leq \beta\}$. $t \rightarrow t + 1$.

end if

Conclude that the interior of P is empty.

end for

Theorem (Kachyan)

The ellipsoid algorithm (Algorithm [1\)](#page-12-0) terminates with a correct answer if E_1 and T are properly chosen.

• In fact, Kachyan showed that one can choose E_1 and T so that their encoding sizes are polynomially bounded, in which case Algorithm [1](#page-12-0) runs in polynomial time.

- The important part is that the ellipsoid algorithm can be turned into a polynomial algorithm for the problem of optimizing a linear function over P.
- The idea is based on binary search.
- \bullet Basically, if we want to minimize a linear function $c^\top x$, then we consider

$$
\left\{x\in\mathbb{R}^d:\ Ax\leq b,\ c^\top x\leq v\right\}
$$

for varying v.

Theorem (Kachyan)

The ellipsoid algorithm (Algorithm [1\)](#page-12-0) terminates with a correct answer if E_1 and T are properly chosen.

• In fact, Kachyan showed that one can choose E_1 and T so that their encoding sizes are polynomially bounded, in which case Algorithm [1](#page-12-0) runs in polynomial time.

Equivalence between optimization and separation

- Next we formally state the equivalence between optimization and separation.
- $\bullet\,$ Let $P\subseteq\mathbb{R}^d\,$ be a rational polytope such that

$$
P=\mathrm{conv}\{v^1,\ldots,v^n\}.
$$

- $\bullet\,$ Then we say that $P\subseteq \mathbb{R}^d$ belongs to a **well-described family of rational polyhedra** if the length L of input needed to describe P satisfies $d \leq L$ and $log D$ is bounded by a polynomial function of L , where D is the largest numerator or denominator of the rational vectors v^k for $k \in [n]$ and $h \in [\ell]$.
- \bullet Here, we care about the number D to bound the complexity of the ellipsoid method.

Equivalence between optimization and separation

1. Separation Problem

Given a well-defined polyhedron $P \subseteq \mathbb{R}^d$ and $\bar{x} \in \mathbb{Q}^d$, either show that $\bar{x}\in P$ or find an inequality $\alpha^\top x\leq \beta$ satisfied by all $x\in P$ such that $\alpha^{\top} \bar{x} > \beta.$

2. Optimization Problem

Given a well-defined polyhedron $P \subseteq \mathbb{R}^d$ and $c \in \mathbb{Q}^d$, find x^* such that $c^{\top}x^* = \max\{c^{\top}x : x \in P\}$ or show that $P = \emptyset$.

Theorem (Grötschel, Lovász, and Schrijver)

For a well-defined polyhedron P, the separation can be solved in polynomial time if and only if the optimization problem can be solved in polynomial time.

Matching from separation

• We solve max $\left\{\sum\right\}$ e∈E $w_e x_e$: $x \in P_{\text{matching}}(G)$ \mathcal{L} , which is given by maximize $\sum_{\mathsf{W}_{\mathsf{e}}\mathsf{X}_{\mathsf{e}}}$ e∈E subject to $\qquad \sum \quad x_{\mu\nu} \leq 1 \quad \text{for all} \,\, \mu \in V,$ v∈V :uv∈E $\sum_{k} x_e \leq \frac{|U| - 1}{2}$ $e \in E(U)$ $\frac{1}{2}$ for all $U \subseteq V$ with $|U| \geq 3$ odd, $x_e > 0$ for all $e \in E$. (4)

Matching from separation

- Although [\(4\)](#page-18-0) is a linear program, one issue is that the number of odd cardinality subsets of V can be exponential in $|V|$.
- In that case, writing down all odd-set inequalities for [\(4\)](#page-18-0) cannot be done in polynomial time.
- Nevertheless, the optimization problem [\(4\)](#page-18-0) is shown to be solvable in polynomial time by the equivalence between separation and optimization.

Matching from separation

- To show that [\(4\)](#page-18-0) can be solved in polynomial time, we show that the separation problem over the matching polytope $P_{\text{matching}}(G)$ can be solved in polynomial time.
- $\bullet\,$ Given $\bar{x}\in\mathbb{Q}^{|\mathcal{E}|}$, we want to decide whether $\bar{x}\in P_{\mathsf{matching}}(\mathcal{G})$ or find an inequality $\alpha^\top x\leq \beta$ that separates \bar{x} from $P_{\sf matching}(\emph{G}).$
- For the matching polytope, we can check whether \bar{x} satisfies the degree constraints and the nonnegativity constraints in $O(|V| + |E|)$ time.
- Hence, the question is as to whether we can decide that \bar{x} satisfies the odd-set inequalities in polynomial time.
- In fact, the separation problem can be solved in polynomial time with its connection to the so-called minimum odd cut problem.