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Outline

In this lecture, we introduce the matching polytope that arises as the convex hull of solutions to
the integer programming formulation of the maximum weight matching problem. We present the
general framework based on the ellipsoid method and separation.

1 Matching polytope

In this section, we provide a linear programming-based approach for computing a maximum weight
matching in a general graph. Recall that a maximum weight matching in a graph G = (V,E) with
weights w ∈ R|E| can be computed by solving the following integer linear program.

maximize
∑
e∈E

wexe

subject to
∑

v∈V :uv∈E
xuv ≤ 1 for all u ∈ V ,

xe ∈ {0, 1} for all e ∈ E.

(8.1)

Moreover, when G is bipartite, our approach was to take its LP relaxation

maximize
∑
e∈E

wexe

subject to
∑

v∈V :uv∈E
xuv ≤ 1 for all u ∈ V ,

xe ≥ 0 for all e ∈ E.

(8.2)

Unlike the bipartite case, solving (8.2) when G is not bipartite does not give us a maximum weight
matching. Consider the example given by Figure 8.1. In Figure 8.1, we have a triangle with every

Figure 8.1: factionality of the linear programming relaxation

edge weight 1. Then the maximum weight of a matching is equals the maximum size of a matching,
which is 1. However, setting xuv = xvw = xwu = 1/2 produces a feasible solution to the LP
relaxation, but its value is 3/2, greater than 1. This example suggests that for a nonbipartite graph
G, (8.2) is not equivalent to (8.1).
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What we need to characterize is the notion of the matching polytope. The matching polytope of
a graph G is formally defined as the convex hull of the incidence vectors of matchings in G, which
is the set of solutions satisfying the constraints of (8.1). Hence, the matching polytope is given by

Pmatching(G) = conv

{
x ∈ {0, 1}|E| :

∑
v∈V :uv∈E

xuv ≤ 1 for all u ∈ V

}
.

We argued that the formulation (8.1) for the maximum weight bipartite matching problem is
equivalent to

max

{∑
e∈E

wexe : x ∈ Pmatching(G)

}
. (8.3)

Proposition 8.1. Let G = (V,E) be a bipartite graph. Then

Pmatching(G) =

{
x ∈ [0, 1]|E| :

∑
v∈V :uv∈E

xuv ≤ 1 for all u ∈ V

}
.

Proof. Let Pmatching(G) denote the set on the right-hand side. Suppose for a contradiction that
Pmatching(G) 6= LPmatching(G). Since Pmatching(G) is a subset of LPmatching(G), it follows that there
exists x̄ ∈ LPmatching(G) \ Pmatching(G). Since Pmatching(G) is closed and convex, the separating
hyperplane theorem implies that there exists w ∈ R|E| such that∑

e∈E
wex̄e > max

{∑
e∈E

wexe : x ∈ Pmatching(G)

}
.

On the other hand, we have proved that solving the LP relaxation (8.2) finds a maximum weight
matching when G is bipartite. This means that for any w ∈ R|E|, we have

max

{∑
e∈E

wexe : x ∈ Pmatching(G)

}
= max

{∑
e∈E

wexe : x ∈ LPmatching(G)

}
.

This leads to a contradiction. Therefore, Pmatching(G) = LPmatching(G), as required.

For a nonbipartite graph, the example in Figure 8.1 implies that the degree constraints are not
enough to characterize the matching polytope. We next explain additional inequalities that are
necessary to describe the matching polytope. Let U ⊆ V be a subset of the vertex set with an odd
number of vertices, as in Figure 8.2. Then look at the set of edges that are fully contained in U .
Then the following inequality is satisfied by any solution to the integer program (8.1):∑

e∈E(U)

xe ≤
|U | − 1

2

where E(U) is the set of edges fully contained in U . We call this inequality an odd-set inequality.
Why is the odd-set inequality valid? Note that the left-hand side

∑
e∈E(U) xe counts the maximum

number of edges from E(U) a maching can take. Here, if a matching takes an edge in E(U), then
it covers two vertices in U . Note that |U | is odd, and by parity, at least one vertex always remains
unmatched. Equivalently, at most |U | − 1 vertices in U can be matched by a matching. Hence,
E(U) contains at most (|U | − 1)/2 edges in a matching.

Let us get back to the example in Figure 8.1. Note that the U = {u, v, w} is an odd cardinality
subset, and the corresponding odd-set inequality is xuv + xvw + xwu ≤ 1. Hence, imposing the
odd-set inequality, we may exclude the fractional solution (xuv, xvw, xwu) = (1/2, 1/2, 1/2).
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Figure 8.2: odd cardinality subset

Theorem 8.2 (Edmonds [Edm65]). Let G = (V,E) be a graph, not necessarily bipartite. Then

Pmatching(G) =

x ∈ [0, 1]|E| :

∑
v∈V :uv∈E

xuv ≤ 1 for all u ∈ V ,

∑
e∈E(U)

xe ≤
|U | − 1

2
for all U ⊆ V with |U | ≥ 3 odd

 .

2 Ellipsoid algorithm and its consequences in combinatorial opti-
mization

In this section, we introduce the ellipsoid algorithm. The problem that we consider is as follows.

Given a polyhedron P = {x ∈ Rd : Ax ≤ b}, (1) conclude that the interior of P is
empty, or (2) find a point x̄ contained in the interior of P .

This is a variant of the feasibility problem. The basic outline of the ellipsoid algorithm for the
feasibility problem is as follows.

Algorithm 1 Ellipsoid algorithm

Initialize a polyhedron P = {x ∈ Rd : Ax ≤ b} and a sufficiently large ellipsoid E1.
for t = 1, . . . , T do

if the center xt of ellipsoid Et is in the interior of P then
Stop and conclude that P contains xt.

else
There exists some inequality α>x ≤ β in the system Ax ≤ b such that α>xt ≥ β.
Let Et+1 be the smallest ellipsoid containing Et ∩

{
x ∈ Rd : α>x ≤ β

}
.

t→ t+ 1.
end if
Conclude that the interior of P is empty.

end for

Theorem 8.3 (Kachyan). The ellipsoid algorithm (Algorithm 1) terminates with a correct answer
if E1 and T are properly chosen.
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In fact, Kachyan showed that one can choose E1 and T so that their encoding sizes are polynomially
bounded, in which case Algorithm 1 runs in polynomial time.

The important part is that the ellipsoid algorithm can be turned into a polynomial algorithm for
the problem of optimizing a linear function over P . The idea is based on binary search. Basically,
if we want to minimize a linear function c>x, then we consider{

x ∈ Rd : Ax ≤ b, c>x ≤ v
}

for varying v.

Next we formally state the equivalence between optimization and separation. Let P ⊆ Rd

be a rational polytope such that
P = conv{v1, . . . , vn}.

Then we say that P ⊆ Rd belongs to a well-described family of rational polyhedra if the
length L of input needed to describe P satisfies d ≤ L and logD is bounded by a polynomial
function of L, where D is the largest numerator or denominator of the rational vectors vk for
k ∈ [n] and h ∈ [`]. Here, we care about the number D to bound the complexity of the ellipsoid
method.

1. Separation Problem
Given a well-defined polyhedron P ⊆ Rd and x̄ ∈ Qd, either show that x̄ ∈ P or find an
inequality α>x ≤ β satisfied by all x ∈ P such that α>x̄ > β.

2. Optimization Problem
Given a well-defined polyhedron P ⊆ Rd and c ∈ Qd, find x∗ such that c>x∗ = max{c>x :
x ∈ P} or show that P = ∅.

Theorem 8.4 (Grötschel, Lovász, and Schrijver [GLS81]). For a well-defined polyhedron P , the
separation problem can be solved in polynomial time if and only if the optimization problem can be
solved in polynomial time.

By Theorem 8.2, we know that (8.1) is equivalent to

max

{∑
e∈E

wexe : x ∈ Pmatching(G)

}
,

which is given by

maximize
∑
e∈E

wexe

subject to
∑

v∈V :uv∈E
xuv ≤ 1 for all u ∈ V ,

∑
e∈E(U)

xe ≤
|U | − 1

2
for all U ⊆ V with |U | ≥ 3 odd,

xe ≥ 0 for all e ∈ E.

(8.4)

Although (8.4) is a linear program, one issue is that the number of odd cardinality subsets of V
can be exponential in |V |. In that case, writing down all odd-set inequalities for (8.4) cannot be
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done in polynomial time. Nevertheless, the optimization problem (8.4) is shown to be solvable in
polynomial time, based on the equivalence between separation and optimization.

To show that (8.4) can be solved in polynomial time, by Theorem 8.4, it suffices to show that
the separation problem over the matching polytope Pmatching(G) can be solved in polynomial time.
Given x̄ ∈ Q|E|, we want to decide whether x̄ ∈ Pmatching(G) or find an inequality α>x ≤ β that
separates x̄ from Pmatching(G). For the matching polytope, we can check whether x̄ satisfies the
degree constraints and the nonnegativity constraints in O(|V | + |E|) time. Hence, the question is
as to whether we can decide that x̄ satisfies the odd-set inequalities in polynomial time. In fact, the
separation problem can be solved in polynomial time with its connection to the so-called minimum
odd cut problem.
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