
Lecture 7: nonbipartite matching and polyhedral theory basics

Dabeen Lee

Industrial and Systems Engineering, KAIST

2025 Winter Lecture Series on Combinatorial Optimization

January 16, 2025

1/26



Outline

• Nonbipartite matching

• Edmonds’ blossom algorithm

• Polyhedral theory basics

• From integer programming to linear programming

2/26



Nonbipartite matching

• In this lecture, we study the matching problem for general graphs that are
not necessarily bipartite.

• In particular, a nonbipartite graph contains an odd cycle.

• Let us consider odd cycles.

• A triangle can take at most one edge for a matching while it requires at
least two vertices for a vertex cover.

• An odd cycle of length five can take at most two edges for a matching but
any vertex cover of it needs at least three vertices.

3/26



Nonbipartite matching

• In general, for an odd cycle of length 2k + 1 for k ≥ 1, the maximum size
of a matching is k while the minimum size of a vertex cover is k + 1.

• This means that König’s theorem does not hold for odd cycles.

4/26



Nonbipartite matching

• In general, for an odd cycle of length 2k + 1 for k ≥ 1, the maximum size
of a matching is k while the minimum size of a vertex cover is k + 1.

• This means that König’s theorem does not hold for odd cycles.

• For a bipartite graph, the augmenting path algorithm with the alternating
tree procedure gives a maximum matching and a minimum vertex cover.

• Can we just apply the augmenting path to a nonbipartite graph?

5/26



Nonbipartite matching

Issue 1

Figure: alternating trees for a bipartite graph (left) and a nonbipartite graph (right)

• Adding an edge between vertices u and v , we create an odd cycle and thus
a nonbipartite graph.

• The alternating tree procedure that starts with r would return the same
alternating tree, which consists of the ru-path and the rv -path.

• Deleting the alternating tree, we are left with vertices x and y .

6/26



Nonbipartite matching

Issue 1

Figure: alternating trees for a bipartite graph (left) and a nonbipartite graph (right)

• Then the alternating tree procedure would conclude that there is no
M-augmenting path.

• This is true for the bipartite graph on the left. What about the graph with
the additional edge uv?

• In fact, uv gives rise to an M-augmenting path.

• This suggests that the alternating tree procedure is incomplete for the
case of nonbipartite graphs.

7/26



Nonbipartite matching

Issue 2

• What goes wrong with the alternating tree procedure when applied to a
nonbipartite graph?

• Suppose that the alternating tree procedure returns an alternating tree
from an M-exposed vertex r , without finding an M-augmenting path.

Figure: illustrating the issue with the alternating tree procedure for a nonbipartite
graph

8/26



Edmonds’ blossom algorithm

• Fortunately, there is a simple remedy for the alternating tree procedure
due to Jack Edmonds.

• We saw that the analysis of the alternating tree procedure may fail when
two vertices from an even level are adjacent.

• In such a case, the paths from an M-exposed vertex r to the two vertices
and the edge between them would create an odd cycle.

• We refer to the odd cycle C as a blossom and the path from the
M-exposed vertex to the blossom as a stem.

• Just for a reference, the structure with a blossom attached to a stem is
called a flower.

9/26



Edmonds’ blossom algorithm

• Edmonds’ idea is that every time the alternating tree procedure detects a
blossom, we may just contract it.

• We replace the vertices of the blossom C by a single vertex.

• Then connect the new vertex to the vertices that are adjacent to a vertex
in the blossom.

• We denote by G/C the graph obtained from G after contracting the
blossom C .

10/26



Edmonds’ blossom algorithm

Lemma

Let G = (V ,E) be a graph, and let M be a matching. Let C be a blossom.
Then there is an M-augmenting path in G if and only if there is an
(M \ C)-augmenting path in G/C .

Figure: reconstructing an M-augmenting path from an (M \ C)-augmenting path

11/26



Edmonds’ blossom algorithm

12/26



Edmonds’ blossom algorithm

Figure: constructing an (M′ \ C)-augmenting path from an M′-augmenting path

13/26



Edmonds’ blossom algorithm

Modification of the augmenting path algorithm

1 Given a matching M in G , take an M-exposed vertex r and start growing
an M-alternating tree from r .

2 If the alternating tree procedure detects two adjacents vertices that have
an even distance from r , we detect a blossom C .

3 Contract the blossom C and continue the algorithm with G/C .

14/26



Edmonds’ blossom algorithm

• This algorithm is referred to as the blossom algorithm for nonbipartite
matching.

• Note that one application of the contraction operation reduces the number
of vertices.

• Therefore, we may contract the graph at most O(|V |) times.

• Recall that the alternating tree procedure takes O(|E |) iterations as it is
equivalent to enumerating the edges.

• Moreover, we know that we may augment the matching at most O(|V |)
times.

• Therefore, the time complexity of Edmonds’ blossom algorithm is
O(|V |2|E |).

15/26



Convex set

A set X ⊆ Rd is convex if it holds for any u, v ∈ X and any λ ∈ [0, 1] that

λu + (1− λ)v ∈ X .

In words, the line segment joining any two points is entirely contained the set.

16/26



Convex combination, convex hull

Given v 1, . . . , v k ∈ Rd , a convex combination of v 1, . . . , v k is

λ1v
1 + · · ·+ λkv

k

where
k∑

i=1

λi = 1 and λi ≥ 0 for i = 1, . . . , k.

The convex hull of a set X , denoted conv(X ), is the set of all convex
combinations of points in S .

17/26



Convex hull example

By definition,

conv(X ) =


n∑

i=1

λiv
i :

n ∈ N, v 1, . . . , vn ∈ X ,
n∑

i=1

λi = 1, λ1, . . . , λn ≥ 0

 .

Exercise: conv(X ) is always convex, regardless of X .

18/26



Polyhedra

A set P ⊆ Rd is a polyhedron if it is defined by a finite number of linear
inequalities, i.e.

P = {x ∈ Rd : Ax ≤ b}.

Hence, a polyhedron is a finite intersection of half-spaces.

Figure: Polyhedron defined by three inequalities

19/26



Polyhedra

• A polyhedron is rational if it is defined by a system of linear inequalities
where all coefficients and right-hand sides are rational.

• A set P ⊆ Rd is a polytope if it is a polyhedron and bounded, i.e.,
P ⊆ [−M,M]d for some sufficiently large M > 0.

Theorem (Minkowski-Weyl theorem for polytopes)

A set P ⊆ Rd is a polytope if and only if

P = conv(v 1, . . . , vp)

for some vectors v 1, . . . , vp.

20/26



Integer programming formulation

A mixed integer linear program (MIP or MILP) has the form

max c>x + h>y

s.t. Ax + Gy ≤ b,

x ∈ Zd , y ∈ Rp

(MILP)

where A, b, c,G , h are vectors/matrices of appropriate dimension with rational
entries.

We refer to (MILP) simplly as an integer program.

Replacing x ∈ Zd by x ∈ Rd , we obtain the linear programming (LP)
relaxation.

21/26



Feasible region

The feasible region or the solution set of (MILP) is the set of solutions
satisfying the linear constraints and the integrality constraints:

S =
{

(x , y) ∈ Zd × Rp : Ax + Gy ≤ b
}
.

A set of the form S is often referred to as a mixed integer linear set.

The feasible region of the LP relaxation is given by

P =
{

(x , y) ∈ Rd × Rp : Ax + Gy ≤ b
}
,

which gives rise to a relaxation of S .

22/26



Convex hull of a mixed integer linear set

Take the feasible region of (MILP)

S =
{

(x , y) ∈ Zd × Rp : Ax + Gy ≤ b
}
,

whose convex hull is given by

conv(S) = conv
({

(x , y) ∈ Zd × Rp : Ax + Gy ≤ b
})

.

Meyer’s theorem: there exists a system of rational linear inequalities
A′x + G ′y ≤ b′ such that

conv(S) =
{

(x , y) ∈ Rd × Rp : A′x + G ′y ≤ b′
}
.

23/26



Reduction to linear programming

Lemma

(MILP) whose feasible region is given by S ⊆ Zd × Rp satisfies

max
{
c>x + h>y : (x, y) ∈ S

}
= max

{
c>x + h>y : (x, y) ∈ conv(S)

}
.

Moreover, the supremum of c>x + h>y is attained over S if and only if it is
attained over conv(S).

24/26



Reduction to linear programming

25/26



Reduction to linear programming

Consequently, (MILP) is equivalent to the linear program

max
{
c>x + h>y : A′x + G ′y ≤ b′

}
for some rational A′,G ′, b′.

Does this contradict our earlier discusstion that integer programming is
NP-hard while linear programming is in class P?

The answer is NO.

The reason is that Meyer’s theorem shows the existence of such a linear
system.

In fact, computing a linear system that gives us the convex hull of S is in
general hard.

26/26


