Lecture 6: extensions of bipartite matching

Dabeen Lee

Industrial and Systems Engineering, KAIST

2025 Winter Lecture Series on Combinatorial Optimization

January 15, 2025

Outline

- Stable matching
- Online bipartite matching

Doctor-Hospital Assignment

• Let us recall the doctor-hospital assignment scenario for the US medical system.

Figure: doctor-hospital assigment

- One may associate it with a bipartite network between a list of medical doctors and a list of hospitals.
- We assume that a hospital has at most one position available.
- Then we can imagine that the assignment problem can be solved by bipartite matching.

Doctor-Hospital Assignment

Preferences

- In real world scenarios, however, doctors have their preferences over certain hospitals.
- At the same time, it is common for hospitals to set priorities over candidates with certain specialties.

Stable matching

- Take a bipartite graph $G = (V, E)$ where the vertex set V is decomposed into D and H where D represents doctors and H is for hospitals.
- Individual doctors in D have a ranking of the hospitals of H based on their preferences.
- Similarly, individual hospitals in H have a ranking of the doctors in D based on their priorities.
- Essentially, we want to compute a matching between doctors and hospitals, taking into account the rankings.

Stable matching

Unstable pair

- The goal of this section is to find a matching without an unstable pair, which is called a stable matching.
- Suppose that a doctor u is matched to a hospital b and a doctor v is matched to a hospital a.

- Imagine a situation when doctor u prefers hospital a over hospital b and at the same time, hospital a also prefers doctor u over doctor v .
- Then doctor u and hospital a have an incentive to break their current assignments and start a new contract between them.
- In this case, we call (u, a) an unstable pair.

Gale-Shapley algorithm

- In 1962, David Gale and Lloyd Shapley propsed an algorithm for finding a stable matching.
- The algorithm is now known as the Gale-Shapley algorithm or the propose-and-reject algorithm.

Algorithm

- **1** Each doctor applies to the hospital that is on the top of the preference ranking which has not previoulsy rejected the doctor.
- ² Each hospital rejects all applicants except for the top candidate and keeps the candidate until a better one applies.
- ³ Repeat steps 1–3 until every doctor either has been linked to a hospital or has been rejected from all hospitals on the preference list.

Correctness

Theorem

The Gale-Shapley algorithm correctly finds a stable matching in $O(|V|^2)$ iterations.

• Recall the maximum weight bipartite matching formulation without the stability condition:

$$
\begin{array}{ll}\text{maximize} & \sum_{e \in E} w_e x_e\\ \text{subject to} & \sum_{v \in V: uv \in E} x_{uv} \le 1 \quad \text{for all } u \in V,\\ & x_e \ge 0 \quad \text{for all } e \in E.\end{array} \tag{1}
$$

 \bullet To avoid unstability between doctor u and hospital a , we need to write a constraint.

Given two edges $e, f \in E$, we say that f **precedes** e if they satisfy the following conditions.

- \bullet e and f share a common end point.
- If $e = uv$ and $f = ux$, then u prefers x over y.
- If $e = vx$ and $f = ux$, then x preferx u over v.

- \bullet Hence, f precedes e if the connection f has a higher priority over the connection e.
- When f precedes e, we express it as $f \succeq e$.
- Then $e \succeq e$ trivially holds.
- Vande Vate in 1989 observed that for any $e \in E$, unstability for e can be avoided by imposing

$$
\sum_{f \in E: f \succeq e} x_f \ge 1. \tag{2}
$$

Validity of the inequality

- Suppose that $e = ux \in E$ ends being unstable.
- Then there exist $uy, vx \in E$ such that $uy \not\succeq ux$ and $vx \not\succeq ux$ while $x_{uy} = x_{vx} = 1.$
- This means that

$$
\sum_{z \in H: uz \succeq ux} x_{uz} \le 1 - x_{uy} = 0,
$$

$$
\sum_{w \in D: wx \succeq ux} x_{wx} \le 1 - x_{vx} = 0.
$$

• This in turn implies that

$$
\sum_{f\in E:f\succeq e}x_f=0\not>1,
$$

violating the constraint [\(2\)](#page-10-0).

• Therefore, imposing [\(2\)](#page-10-0) would let us avoide any unstable pair.

Completeness

• Vande Vate in 1989 further proved that the linear program with [\(2\)](#page-10-0) given by

$$
\begin{array}{ll}\n\text{maximize} & \sum_{e \in E} w_e x_e \\
\text{subject to} & \sum_{v \in V: uv \in E} x_{uv} \le 1 \quad \text{for all } u \in V, \\
& \sum_{f \in E: f \succeq e} x_f \ge 1 \quad \text{for all } e \in E, \\
& x_e \ge 0 \quad \text{for all } e \in E\n\end{array}\n\tag{3}
$$

returns a maximum weight stable matching.

- So far, one of the inherent assumptions was that the entire structure of a given bipartite graph is available to the decision-maker.
- Hence, an algorithm receives the entire graph and computes a matching that is globally optimal.
- In many real world applictions, only some local structures of the graph is accessible while others are revealed gradually over time.

Weapon-target assignment

- One side prepares a missile defense system while the other side launches fighter aircrafts.
- It is quite rare that all enemy jets arrive at the same time, while it is more common that they arrive in an unpredictable sequence.
- To defend against an enemy fighter, we would have to assign a missile to it in real time.

- We consider the so-called **online bipartite matching** problem.
- Take a bipartite graph $G = (V, E)$ where the vertex set V is partitioned into V_1 and V_2 .
- At the beginning, the vertex set V_1 is present.
- In contrast, the vertices in V_2 arrive **online**, which means that the vertices arrive one by one in a sequence while the sequence is not known.
- When a vertex v in V_2 arrives, we may take its neighbor u in V_1 to match with it or we may decide to just skip it.

Competitive ratio

- An algorithm for online bipartite matching is evaluated by the size of the matching obtained after all vertices of V_2 arrive.
- An algorithm makes decisions only with local information about the graph, so the size of the final matching cannot be better than the maximum size of a matching in G.
- Nevertheless, our performance measure is the **competitive ratio** defined as

The size of a matching constructed by algorithm \mathcal{A} . The maximum size of a matching in G

Greedy algorithm for online bipartite matching

Greedy algorithm

• Every time a vertex v in V_2 arrives, match it to one of its available neighbors.

Proposition

The simple greedy algorithm achieves a competitive ratio of $1/2$ for online bipartite matching.

Ranking algorithm for online bipartite matching

Ranking algorithm by Karp, Vazirani, and Vazirani (1990)

- **■** For each vertex $u \in V_1$, sample a weight $p_u \in [0, 1]$ uniformly at random.
- **2** Whenever a vertex $v \in V_2$ arrives, match v to its available neighbor that has the highest weight.

Ranking algorithm for online bipartite matching

- The simple algorithm achieves a better performance in expectation.
- To be more precise, we consider the notion of expected competitive ration defined as

The expected size of a matching constructed by algorithm A The maximum size of a matching in G

Theorem (Karp, Vazirani, and Vazirani)

The ranking algorithm achieves an expected competitive ratio of $(1 - 1/e)$ for online bipartite matching.

- Here, $1 1/e$ is roughly 0.6321.
- Although the ranking algorithm is simple, its analysis is not as trivial.

.