
Introduction to Modern Combinatorial Optimization POSTECH, Winter 2025
Lecture #6: extensions of bipartite matching January 15, 2025
Lecturer: Dabeen Lee

Outline

In this lecture, we cover two extensions of bipartite matching. First, we discuss stable matching
that provides a common framework for matching medical students to hospitals. Lastly, we study
online bipartite matching, which is a dynamic variant of bipartite matching. Next, we study online
bipartite matching, which is a dynamic variant of bipartite matching.

1 Stable matching

Let us recall the doctor-hospital assignment scenario for the US medical system. One may associate

Figure 6.1: doctor-hospital assigment

it with a bipartite network between a list of medical doctors and a list of hospitals. To simplify
our discussion, we assume that a hospital has at most one position available. Then we can imagine
that the assignment problem can be solved by bipartite matching. In real world scenarios, however,
doctors have their preferences over certain hospitals, and at the same time, it is common for
hospitals to set priorities over candidates with certain specialties.

To model this situation, let us take a bipartite graph G = (V,E) where the vertex set V is
decomposed into D and H where D represents doctors and H is for hospitals. Individual doctors
in D have a ranking of the hospitals of H based on their preferences. Similarly, individual hospitals
in H have a ranking of the doctors in D based on their priorities. Essentially, we want to compute a
matching between doctors and hospitals, taking into account the rankings. The goal of this section
is to find a matching without an unstable pair, which is called a stable matching. What is an
unstable match here? Suppose that a doctor u is matched to a hospital b and a doctor v is matched
to a hospital a. Imagine a situation when doctor u prefers hospital a over hospital b and at the
same time, hospital a also prefers doctor u over doctor v. Then doctor u and hospital a have an

Figure 6.2: doctor-hospital assigment

1

incentive to break their current assignments and start a new contract between them. In this case,
we call (u, a) an unstable pair.

In 1962, David Gale and Lloyd Shapley [GS62] propsed an algorithm for finding a stable matching,
which is now known as the Gald-Shapley algorithm or the propose-and-reject algorithm. The
algorithm works as follows.

1. Each doctor applies to the hospital that is on the top of the preference ranking which has not
previoulsy rejected the doctor.

2. Each hospital rejects all applicants except for the top candidate and keeps the candidate until
a better one applies.

3. Repeat steps 1–3 until every doctor either has been linked to a hospital or has been rejected
from all hospitals on the preference list.

Theorem 6.1. The Gale-Shapley algorithm correctly finds a stable matching in O(|V |2) iterations.

Proof. Let us first establish finite termination for the algorithm. Every time a doctor receives a
rejection, the list of available hospital choices shrinks. Moreover, a hospital updates its candidate
only with a better applicant. Note that the algorithm continues until when no hopsital rejects a
doctor. As the total number of rejections that can be made is O(|V |2), the algorithm terminates
in O(|V |2) iterations.

Next, we show that the algorithm is guaranteed to find a stable matching. Suppose for a contra-
diction that there is an unstable pair of a doctor u and a hospital x. This means that doctor u is
matched to another hospital y and hospital x hires another doctor v while u prefers x over y and
x prefers u over v as illustrated in Figure 6.2. However, if doctor u applied to hospital x, then it
would reject doctor v and keep u instead. At the same time, doctor u would not apply to hospital
y before getting rejected by hospital x. Therefore, such an unstable pair (u, x) should not exist
under the Gale-Shapley algorithm.

Next we consider the weighted case. In the remainder of this section, we explain a linear programming-
based method for computing a maximum weight stable matching. Recall that the maximum weight
bipartite matching problem without the stability condition can be formulated as

maximize
∑
e∈E

wexe

subject to
∑

v∈V :uv∈E
xuv ≤ 1 for all u ∈ V ,

xe ≥ 0 for all e ∈ E.

(6.1)

Then the question is, how do we exclude an unstable pair as illustrated in Figure 6.2? We need
to write a constraint to avoid unstability between doctor u and hospital a. The idea is as follows.
Given two edges e, f ∈ E, we say that f precedes e if they satisfy the following conditions.

• e and f share a common end point.

• If e = uy and f = ux, then u prefers x over y.

• If e = vx and f = ux, then x preferx u over v.

2

In other words, f precedes e if the connection f has a higher priority over the connection e. When
f precedes e, we express it as f � e. Then e � e trivially holds. Vande Vate in 1989 observed that
for any e ∈ E, unstability for e can be avoided by imposing∑

f∈E:f�e
xf ≥ 1. (6.2)

Let us consider the validity of the constraint. Suppose that e = ux ∈ E ends being unstable. Then
there exist uy, vx ∈ E such that uy 6� ux and vx 6� ux while xuy = xvx = 1. This means that∑

z∈H:uz�ux
xuz ≤ 1− xuy = 0,

∑
w∈D:wx�ux

xwx ≤ 1− xvx = 0.

This in turn implies that ∑
f∈E:f�e

xf = 0 6> 1,

violating the constraint (6.2). Therefore, imposing (6.2) would let us avoide any unstable pair. In
fact, Vande Vate [Van89] in 1989 further proved that the linear program with (6.2) given by

maximize
∑
e∈E

wexe

subject to
∑

v∈V :uv∈E
xuv ≤ 1 for all u ∈ V ,∑

f∈E:f�e
xf ≥ 1 for all e ∈ E,

xe ≥ 0 for all e ∈ E

(6.3)

returns a maximum weight stable matching.

2 Online bipartite matching

So far, one of the inherent assumptions was that the entire structure of a given bipartite graph
is available to the decision-maker. Hence, an algorithm receives the entire graph and computes a
matching that is globally optimal. In many real world applictions, only some local structures of the
graph is accessible while others are revealed gradually over time. For example, one may think of
the weapon-target assignment problem where one side prepares a missile defense system while
the other side launches fighter aircrafts. It is quite rare that all enemy jets arrive at the same
time, while it is more common that they arrive in an unpredictable sequence. To defend against
an enemy fighter, we would have to assign a missile to it in real time. Otherwise, it would incur a
considerable damage.

To model such scenarios, we consider the so-called online bipartite matching problem. Take a
bipartite graph G = (V,E) where the vertex set V is partitioned into V1 and V2. At the beginning,
the vertex set V1 is present. In contrast, the vertices in V2 arrive online, which means that the
vertices arrive one by one in a sequence while the sequence is not known. When a vertex v in V2

arrives, we may take its neighbor u in V1 to match with it or we may decide to just skip it.

An algorithm for online bipartite matching is evaluated by the size of the matching obtained after
all vertices of V2 arrive. Of course, as an algorithm makes decisions only with local information

3

Figure 6.3: missile-fighter assignment

about the graph, the size of the final matching cannot be better than the maximum size of a
matching in G. Nevertheless, our performance measure is the competitive ratio defined as

The size of a matching constructed by algorithm A
The maximum size of a matching in G

.

First, let us consider the simple greedy algorithm. The algorithm runs with the following simple
rule:

• Every time a vertex v in V2 arrives, match it to one of its available neighbors.

Proposition 6.2. The simple greedy algorithm achieves a competitive ratio of 1/2 for online bi-
partite matching.

Proof. Note that a matching returned by the greedy algorithm is always maximal. In Lecture 1,
we proved that the number of edges in any maximal matching is at least half of the maximum size
of a matching in a bipartite graph. This proves that the competitive ratio is at least 1/2.

Although the greedy algorithm already achieves a constant approximation, we may achieve an
improvement by randomization. A randomized algorithm would have some random aspects
in selecting vertices for online bipartite matching. In this section, we cover the famous ranking
algorithm due to Richard Karp, Umesh Vazirani, and Vijay Vazirani [KVV90] in 1990. The
algorithm works as follows.

1. For each vertex u ∈ V1, sample a weight pu ∈ [0, 1] uniformly at random.

2. Whenever a vertex v ∈ V2 arrives, match v to its available neighbor that has the highest
weight.

This simple algorithm achieves a better performance in expectation. To be more precise, we consider
the notion of expected competitive ration defined as

The expected size of a matching constructed by algorithm A
The maximum size of a matching in G

.

4

Theorem 6.3 (Karp, Vazirani, and Vazirani [KVV90]). The ranking algorithm achieves an expected
competitive ratio of (1− 1/e) for online bipartite matching.

Here, 1− 1/e is roughly 0.6321. Although the ranking algorithm is simple, proving Theorem 6.3 is
not as trivial.

References

[GS62] D. Gale and L. S. Shapley. College admissions and the stability of marriage. The American
Mathematical Monthly, 69(1):9–15, 1962. 1

[KVV90] R. M. Karp, U. V. Vazirani, and V. V. Vazirani. An optimal algorithm for on-line
bipartite matching. In Proceedings of the Twenty-Second Annual ACM Symposium on
Theory of Computing, STOC ’90, page 352–358, New York, NY, USA, 1990. Association
for Computing Machinery. 2, 6.3

[Van89] John H. Vande Vate. Linear programming brings marital bliss. Operations Research
Letters, 8(3):147–153, 1989. 1

5

	Stable matching
	Online bipartite matching

