Lecture 5: the Hungarian algorithm and matching markets

Dabeen Lee

Industrial and Systems Engineering, KAIST

2025 Winter Lecture Series on Combinatorial Optimization

January 15, 2025

Outline

- Hungarian algorithm for maximum weight bipartite matching
- Vickrey–Clarke–Groves pricing mechanism for matching markets

Combinatorial algorithm for maximum weight bipartite matching

- In Lecture 3, we learned an LP-based algorithm for maximum weight bipartite matching.
- Net we cover a combinatorial algorithm, that is known as the **Hungarian** algorithm.

Preprocessing step

- **1** First, as we are interested in a maximum weight matching, we may discard edges with a negative weight.
- **2** Up to adding dummy vertices and dummy edges with weight zero, we obtain a complete bipartite graph $K_{n,n}$ for some $n \geq 1$.

Figure: illustrating the preprocessing step

- After the preprocessing step, we may assume that $G = K_{n,n}$ for some $n \geq 1$ and $w \in \mathbb{R}^{|E|}_+$.
- Then the problem boils down to finding a maximum weight perfect matching in G.
- As before, let the vertex set V be partitioned into V_1 amd V_2 with $|V_1| = |V_2| = n.$
- Then a maximum weight matching in G can be computed by

maximize
$$
\sum_{e \in E} w_e x_e
$$

\nsubject to
$$
\sum_{v \in V_2} x_{uv} \le 1 \text{ for all } u \in V_1,
$$

$$
\sum_{u \in V_1} x_{uv} \le 1 \text{ for all } v \in V_2,
$$

$$
x_e \ge 0 \text{ for all } e \in E.
$$

$$
(1)
$$

- Again, as $w_e \ge 0$ for all $e \in E$ and G is a complete bipartite graph, [\(1\)](#page-3-0) has an optimal solution that corresponds to a perfect matching.
- Then it follows that (1) is equivalent to

maximize
$$
\sum_{e \in E} w_e x_e
$$

\nsubject to
$$
\sum_{v \in V_2} x_{uv} = 1 \text{ for all } u \in V_1,
$$

\n
$$
\sum_{u \in V_1} x_{uv} = 1 \text{ for all } v \in V_2,
$$

\n
$$
x_e \ge 0 \text{ for all } e \in E.
$$
 (Primal)

• The dual of [\(Primal\)](#page-4-0) is given by

minimize
$$
\sum_{u \in V_1} y_u + \sum_{v \in V_2} z_v
$$

subject to $y_u + z_v \ge w_{uv}$ for all $uv \in E$. (Dual)

• The following result is a direct consequence of the complementary slackness condition for linear programming.

Lemma

Let M be a perfect matching in G , feasible to $(Primal)$. Suppose that there exists a feasible solution (y, z) to $(Dual)$ that satisfies $y_u + z_v = w_{uv}$ for every $uv \in M$. Then M is a maximum weight matching.

- Based on the lemma, the main idea behind the Hungarian algorithm is as follows.
	- (y, z) always remains feasible to $(Dual)$, satisfying the constraints of $(Dual)$.
	- Only an edge $uv \in E$ satisfying $y_{u} + z_{v} = w_{uv}$ can be added to our matching M.
- Once *M* becomes a perfect matching, becoming feasible to [\(Primal\)](#page-4-0), then it will satisfy the conditions of the lemma, which guarantees that M is a maximum weight matching.

- To implement this idea, we introduce the notion of equality subgraphs.
- Given a feasible solution (y, z) to $(Dual)$, we define the subgraph of G taking the edges $uv \in E$ satisfying $y_u + z_v = w_{uv}$.
- We use notation $G_{v,z}$ to denote the equality subgraph of G associated with (y, z) .
	- Given a feasible solution (y, z) to [\(Dual\)](#page-5-0), we take a maximum matching M in $G_{v,z}$.

Algorithm 1 Hungarian algorithm for maximum weight bipartite matching

Input: complete bipartite graph $G = (V, E)$ with $V = V_1 \cup V_2$ and $w \in \mathbb{R}^{|E|}_+$ Initialize $y_u = \max_{v \in V_2} w_{uv}$ for $u \in V_1$, $z_v = 0$ for $v \in V_2$ Initialize $M = \emptyset$ and $B = \emptyset$ while M is not a perfect matching do Construct the equality subgraph $G_{v,z}$ associated with (y, z) Set M and B as a maximum matching and a minimum vertex cover in G_{v} , respectively Set $R = V_1 \cap B$ and $T = V_2 \cap B$ Compute $\epsilon = \min \{y_u + z_v - w_{uv} : u \in V_1 - R, v \in V_2 - T\}$ Update $y_u = y_u - \epsilon$ for $u \in V_1 - R$ and $z_v = z_v + \epsilon$ for $v \in T$ end while Return M

Example

Example

Let us consider an example with $G = K_{5,5}$.

In each matrix, the rows correspond to the vertices in V_1 , and the columns are for the vertices in V_2 .

Correctness

Theorem

Let $G=(V,E)$ be a complete bipartite graph, and let $w\in\mathbb{R}_+^{|E|}$. Then Algorithm 1 finds a maximum weight pefect matching in G.

Correctness

- We have a nework of sellers and buyers for certain items in a market place.
- To simplify our discussion, let us assume that there are three sellers labeled u , v , and w and that we have a set of three buyers labeled x , y , and z .
- Each seller offers an item, and each buyer has certain valuations of the items.

- The sellers, or the market, are supposed to set the prices of items.
- For the item offered by seller $i \in \{u, v, w\}$, we use notation p_i for its price.
- We use notation v_{ij} to denote the valuation of buyer $j \in \{x, y, z\}$ for the item offered by seller $i \in \{u, v, w\}$.
- Then the utility of buyer j buying the item of seller i is given by

- We assume that the rational behavior of buyer i , which means that the buyer would decide to buy the item from seller i only if u_{ii} is nonnegative.
- It is natural that the assignment of buyers to sellers can be represented as a bipartite matching.
- Let $M \subseteq \{u, v, w\} \times \{x, y, z\}$ denote a matching or an assignment of buyers and sellers.
- Then the social welfare is defined as

the social welfare $=$ the total profit of sellers $+$ the total profit of buyers.

• Then it follows that

the social welfare $= \sum (\text{the profit of buyer } i + \text{the profit of seller } j)$ ij∈M

=

- Therefore, the social welfare equals the valuation sum of items that are matched with buyers.
- Then the social welfare can be viewed as the weight of a matching M where each assignment between seller i and buyer j is given by the item valuation v_{ii} .
- In turn, this implies that the social welfare is maximized if the corresponding matching is a maximum weight matching.

- However, individual buyers would behave rationally, so they will always target an item with the highest utility.
- It is quite likely to have conflicts between buyers.
- Then a market moderator would set a high price for a popular item.
- We call the set of prices are market clearing when a perfect matching is available under the prices.
- We will explain the Vickrey–Clarke–Groves (VCG) mechanism that is proven to be market clearing.

The VCG mechanism

- The basic idea is that whenever there is a conflict which forbids a perfect matching, we increase the price of some item.
- Here, a conflict can be captured by the notion of preferred-seller graph.
- For each buyer j , we draw an edge between buyer j and seller u for every $u \in \arg \max \{ u_{ii} = v_{ii} - p_i : i \in \{u, v, w\} \}.$

The VCG mechanism

- The basic idea is that whenever there is a conflict which forbids a perfect matching, we increase the price of some item.
- Here, a conflict can be captured by the notion of preferred-seller graph.
- For each buyer j , we draw an edge between buyer j and seller u for every $u \in \arg \max \{ u_{ii} = v_{ii} - p_i : i \in \{u, v, w\} \}.$

Figure: after increasing the price of the item in $N(S_1)$

Figure: after increasing the prices of the items in $N(S_2)$

Figure: after increasingthe prices of the items in $N(S_3)$

Theorem

The Vickrey–Clarke–Groves (VCG) mechanism always finds a market clearing price that maximizes the social welfare in finite time.