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Outline

In this lecture, we explain the Hungarian algorithm for computing a maximum weight matching
in a bipartite graph. Next, as an application of bipartite matching, we consider the problem of
matching markets based on the Vickrey–Clarke–Groves pricing mechanism.

1 Hungarian algorithm for maximum weight bipartite matching

In Lecture 3, we learned an LP-based algorithm for computing a maximum weight matching in
a bipartite graph. In this section, we introduce a combinatorial algorithm, that is known as the
Hungarian algorithm.

Preprocessing step Let G = (V,E) be a bipartite graphm and let w ∈ R|E| be the edge weight
vector.

1. First, as we are interested in a maximum weight matching, we may discard edges with a
negative weight.

2. Up to adding dummy vertices and dummy edges with weight zero, we obtain a complete
bipartite graph Kn,n for some n ≥ 1.

Figure 5.1: illustrating the preprocessing step

We may delete the dummy vertices and dummy edges later.

After the preprocessing step, we may assume that G = Kn,n for some n ≥ 1 and w ∈ R|E|
+ , in which

case the problem boils down to finding a maximum weight perfect matching in G. As before,
let the vertex set V be partitioned into V1 amd V2 with |V1| = |V2| = n. Then a maximum weight
matching in G can be computed by

maximize
∑
e∈E

wexe

subject to
∑
v∈V2

xuv ≤ 1 for all u ∈ V1,∑
u∈V1

xuv ≤ 1 for all v ∈ V2,

xe ≥ 0 for all e ∈ E.

(5.1)
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Again, as we ≥ 0 for all e ∈ E and G is a complete bipartite graph, (5.1) has an optimal solution
that corresponds to a perfect matching. Then it follows that (5.1) is equivalent to

maximize
∑
e∈E

wexe

subject to
∑
v∈V2

xuv = 1 for all u ∈ V1,∑
u∈V1

xuv = 1 for all v ∈ V2,

xe ≥ 0 for all e ∈ E.

(5.2)

The dual of (5.2) is given by

minimize
∑
u∈V1

yu +
∑
v∈V2

zv

subject to yu + zv ≥ wuv for all uv ∈ E.
(5.3)

The following result is a direct consequence of the complementary slackness condition for
linear programming, while we state its direct proof.

Lemma 5.1. Let M be a perfect matching in G. Suppose that there exists a feasible solution (y, z)
to (5.3) that satisfies yu + zv = wuv for every uv ∈M . Then M is a maximum weight matching.

Proof. Let M ′ be a perfect matching in G, and let (y′, z′) be a solution satisfying the constraints
of (5.3). Then Note that for any solution (y, z) satisfying the constraints of (5.3), we have∑

uv∈M ′

wuv ≤
∑

uv∈M ′

(y′u + z′v) =
∑
u∈V1

y′u +
∑
v∈V2

z′v

where the equality holds because M ′ is a perfect matching. This implies that

max

{ ∑
uv∈M ′

wuv : M ′ is a perfect matching

}

≤ min

∑
u∈V1

y′u +
∑
v∈V2

z′v : y′u + z′v ≥ wuv for all uv ∈ E


If some (y, z) satisfies yu + zv = wuv for every uv ∈M , then it follows that∑

uv∈M
wuv =

∑
uv∈M

(ȳu + z̄v) =
∑
u∈V1

ȳu +
∑
v∈V2

z̄v.

This indicates that the weight of M achieves the maximum possible, and therefore, M is a maximum
weight matching.

Based on Lemma 5.1, the main idea behind the Hungarian algorithm is as follows.

• (y, z) always remains feasible to (5.3), satisfying the constraints of (5.3).

• Only an edge uv ∈ E satisfying yu + zv = wuv can be added to our matching M .
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Once our matching M becomes a perfect matching, then it will satisfy the conditions of Lemma 5.1,
which guarantees that M is a maximum weight matching. To implement this idea, we introduce
the notion of equality subgraphs. Given a feasible solution (y, z) to (5.3), we define the subgraph
of G taking the edges uv ∈ E satisfying yu +zv = wuv. We use notation Gy,z to denote the equality
subgraph of G associated with (y, z).

• Given a feasible solution (y, z) to (5.3), we take a maximum matching M in Gy,z.

Based on this, we deduce the Hungarian algorithm.

Algorithm 1 Hungarian algorithm for maximum weight bipartite matching

Input: complete bipartite graph G = (V,E) with V = V1 ∪ V2 and w ∈ R|E|
+

Initialize yu = maxv∈V2 wuv for u ∈ V1, zv = 0 for v ∈ V2
Initialize M = ∅ and B = ∅
while M is not a perfect matching do

Construct the equality subgraph Gy,z associated with (y, z)
Set M and B as a maximum matching and a minimum vertex cover in Gy,z, respectively
Set R = V1 ∩B and T = V2 ∩B
Compute ε = min {yu + zv − wuv : u ∈ V1 −R, v ∈ V2 − T}
Update yu = yu − ε for u ∈ V1 −R and zv = zv + ε for v ∈ T

end while
Return M

Example 5.2 (Example 3.2.10., West). Let us consider an example with G = K5,5 given by Fig-
ure 5.2. In each matrix, the rows correspond to the vertices in V1, and the columns are for the

Figure 5.2: an example of running the Hungarian algorithm

vertices in V2.

Theorem 5.3. Let G = (V,E) be a complete bipartite graph, and let w ∈ R|E|
+ . Then Algorithm 1

finds a maximum weight pefect matching in G.
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Proof. First, we argue that (y, z) always remains feasible to (5.3). The initial solution with yu =
maxv∈V2 wuv for u ∈ V1, zv = 0 for v ∈ V2 is feasible because maxv∈V2 wuv ≥ wuv for any uv ∈ E.
Suppose that (y, z) is feasible to (5.3) at some point of running Algorithm 1. Let M and B
be a maximum matching and a minimum vertex cover in Gy,z, respectively. Moreover, we take
R = V1 ∩B and T = V2 ∩B and

ε = min {yu + zv − wuv : u ∈ V1 −R, v ∈ V2 − T} .

Assume that M is not a perfect matching. Then. let (y′, z′) denote what is obtained from (y, z)
after the update. It is sufficient to check that y′u + z′v ≥ wuv for u ∈ V1 −R and v ∈ V2. Note that
for u ∈ V1 −R,

y′u + z′v =

{
yu − ε+ zv if v ∈ V2 − T ,

yu − ε+ zv + ε if v ∈ T .

Moreover, for u ∈ V1 −R and v ∈ V2 − T , we have

yu + zv − ε ≥ yu + zv − (yu + zv − wuv) = wuv.

Therefore, what remains is to argue that Algorithm 1 terminates with a perfect matching. Suppose
that the current matching M is not a pefect matching, in which case B = R ∪ T is not a vertex
cover of G. That meanas that there exists an edge not covered by B, which implies that the has
not yet appeared in the equality subgraph Gy,z. Therefore, we must have ε > 0. Let u ∈ V1 − R
and v ∈ V2 − T be such that yu + zv − wuv = ε. Then after the update, we have

y′u + z′v − wuv = yu − ε+ zv − wuv = 0.

Hence, the edge uv newly enters the equality subgraph. That said, one instance of the while loop
increases the number of edges in the equality subgraph by at least 1. Note that G has O(|V |2)
edges in total, so the algorithm will terminate eventually.

2 Matching markets

Suppose that we have a nework of sellers and buyers for certain items in a market place. To simplify
our discussion, let us assume that there are three sellers labeled u, v, and w and that we have a set
of three buyers labeled x, y, and z. Each seller offers an item, and each buyer has certain valuations
of the items as shown in Figure 5.3. The sellers, or the market, are supposed to set the prices of

Sellers

u

v

w

Buyers

x

y

z

Valuations

30, 16, 7

23, 14, 5

13, 7, 3

Figure 5.3: matching market example

items. For the item offered by seller i ∈ {u, v, w}, we use notation pi for its price. We use notation
vij to denote the valuation of buyer j ∈ {x, y, z} for the item offered by seller i ∈ {u, v, w}. Suppose
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that buyer j is assigned to seller i and gets to buy its item. Then the utility of buyer j buying
the item of seller i is given by

uij := vij − pi.

We assume that the rational behavior of buyer j, which means that the buyer would decide to
buy the item from seller i only if uij is nonnegative. It is natural that the assignment of buyers to
sellers can be represented as a bipartite matching. Let M ⊆ {u, v, w}×{x, y, z} denote a matching
or an assignment of buyers and sellers. Then the social welfare is defined as

the social welfare = the total profit of sellers + the total profit of buyers.

Then it follows that

the social welfare =
∑
ij∈M

(the profit of buyer i + the profit of seller j)

=
∑
ij∈M

(pi + vij − pi)

=
∑
ij∈M

vij .

Therefore, the social welfare equals the valuation sum of items that are matched with buyers. Then
the social welfare can be viewed as the weight of a matching M where each assignment between
seller i and buyer j is given by the item valuation vij . In turn, this implies that the social welfare
is maximized if the corresponding matching is a maximum weight matching.

We have just argued that finding a maximum weight matching leads to the maximum social welfare.
However, individual buyers would behave rationally, so they will always target an item with the
highest utility. It is quite likely to have conflicts between buyers. To respond to such scenarios, a
market moderator would set a high price for a popular item. We call the set of prices are market
clearing when a perfect matching is available under the prices. In this section, we will explain the
Vickrey–Clarke–Groves (VCG) mechanism that is proven to be market clearing.

Let us explain how the VCG mechanism works. The basic idea is that whenever there is a conflict
which forbids a perfect matching, we increase the price of some item. Here, a conflict can be
captured by the notion of preferred-seller graph. For each buyer j, we draw an edge between
buyer j and seller u for every u ∈ argmax {uij = vij − pi : i ∈ {u, v, w}}. To elaborate, let us set
the prices of items to 0 initially, and the corresponding preferred-seller graph is given in Figure 5.4.
By Hall’s marriage theorem, the current preferred-seller graph does not have a perfect matching

u0

v0

w0

x 30, 16, 7

y 23, 14, 5

z 13, 7, 3

Figure 5.4: initial preferred-seller graph

because N({x, y, z}) = {u}. We have just identified a conflict S1 = {x, y, z}, which means that
|N(S1)| < |S1|. Then we increase the price of the item of seller u ∈ N(S1) until we get a change in
the preferred-seller graph. Let us set the price pu to 6. Then we get the following new preferred-
seller graph in Figure 5.5. The preferred-seller graph in Figure 5.5 also has a conflict S2 = {x, y, z}
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u6

v0

c0

x 30, 16, 7

y 23, 14, 5

z 13, 7, 3

Figure 5.5: after increasing the price of the item in N(S1)

as N(S2) = {u, v} and |N(S2)| < |S2|. Again, we increase the prices of items in N(S2) = {u, v}
until we deduce a change in the preferred-seller graph. Let us increase pu and pv by 4. As a result,
we deduce our new preferred-seller graph given in Figure 5.6. Note that Figure 5.6 still has a

u10

v4

w0

x 30, 16, 7

y 23, 14, 5

z 13, 7, 3

Figure 5.6: after increasing the prices of the items in N(S2)

conflict, S3 = {x, y}. As before, we increase the price pu by 3, which gives us the new graph given
in Figure 5.7. Finally, the preferred-seller graph admits a perfect matching without a conflict. The

u13

v4

w0

x 30, 16, 7

y 23, 14, 5

z 13, 7, 3

Figure 5.7: after increasingthe prices of the items in N(S3)

perfect matching generates the assigned pair of (u, x), (v, y), and (w, z).

Theorem 5.4. The Vickrey–Clarke–Groves (VCG) mechanism always finds a market clearing price
that maximizes the social welfare in finite time.

Proof. We prove finite termination first. Let I denote the set of sellers, and let J denote the set of
buyers. We take the potential defined by

Φ =
∑
i∈I

pi +
∑
j∈J

max{vij − pi : i ∈ I}.

Initially, the price of each item is set to 0. Hence, the initial potential is given

Φinitial =
∑
j∈J

max{vij : i ∈ I}.

We next argue that the potential strictly decreses until we find a perfect matching. If there is
no perfect matching in the current preferred-seller graph, there is a conflict set S ⊆ J such that
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|N(S)| < |S|. In this case, we increase the price of items in N(S) by some δ. After the update,
the total profit of sellers increases by |N(S)|δ while the total profit of buyers decreases by |S|δ.
As |N(S)| is strictly less than |S|, it follows that the potential strictly decreases. Therefore, the
algorithm terminates in finite time.

When the preferred-seller graph contains a perfect matching, the VCG mechanism selects a perfect
matching M that maximizes ∑

ij∈M
(vij − pi) =

∑
ij∈M

vij −
∑
i∈I

pi,

which is equivalent to maximizing the social welfare.
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