Lecture 4: König's theorem and the Hungarian algorithm

Dabeen Lee

Industrial and Systems Engineering, KAIST

2025 Winter Lecture Series on Combinatorial Optimization

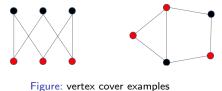
January 14, 2025

Outline

- Vertex cover problem
- LP duality-based proof for König's theorem
- Hungarian algorithm for maximum weight bipartite matching

Vertex cover

Given a graph G = (V, E), a subset B of the vertex set V is called a vertex cover if for every edge e ∈ E, e has an endpoint in B.



• The vertex cover problem is to find a vertex cover with the minimum number of vertices.

Proposition

Let G = (V, E) be a graph. Then the minimum size of a vertex cover for G is greater than or equal to the maximum size of a matching in G.

König's theorem

Theorem (König's theorem)

Let G = (V, E) be a bipartite graph. Then the minimum size of a vertex cover for G equals the maximum size of a matching in G.

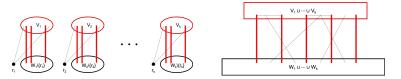


Figure: vertex set decomposition by the alternating tree procedure

Remarks

- The proof suggests that the augmenting path algorithm not only gives us a maximum matching but also a minimum vertex cover.
- This means that the vertex cover problem can be solved in polynomial time.
- However, the vertex cover problem for general graphs is known to be NP-hard.

- As for the matching problem, vertex cover also admits an integer linear programming formulation.
- For each vertex v ∈ V, we use a variable y_v to indicate whether v is picked for our vertex cover B or not, i.e.,

$$y_{\nu} = \begin{cases} 1 & \text{if } \nu \text{ is included in vertex cover } B, \\ 0 & \text{otherwise.} \end{cases}$$

• Then we may impose the condition that *y* corresponds to a vertex cover by setting

$$y_u + y_v \ge 1$$

for all $uv \in E$.

 Therefore, the vertex cover problem can be equivalently formulated as the following integer linear program:

$$\begin{array}{ll} \text{minimize} & \sum_{v \in V} y_v \\ \text{subject to} & y_u + y_v \geq 1 \quad \text{for all } uv \in E, \\ & y_v \in \{0, 1\} \quad \text{for all } v \in V. \end{array}$$

Proposition

Let G = (V, E) be a graph, not necessarily bipartite. Then solving the optimization problem (IP) computes a minimum vertex cover for G.

• The LP relaxation of (IP) is given by

$$\begin{array}{ll} \text{minimize} & \sum_{v \in V} y_v \\ \text{subject to} & y_u + y_v \ge 1 \quad \text{for all } uv \in E, \\ & y_v \ge 0 \quad \text{for all } v \in V. \end{array}$$
(LP)

Theorem

Let G = (V, E) be a bipartite graph. Then the LP relaxation (LP) has an optimal solution y^* that satisfies $y^*_v \in \{0, 1\}$ for all $v \in V$. Moreover, one can find a minimum vertex cover for G by solving the linear program (LP).

- Let y
 be an optimal solution to (LP). By the nonnegativity constraint, we have y
 v ≥ 0 for all v ∈ V.
- If y
 _v > 1 for some v ∈ V, then one may replace y
 _v with 1 to improve the objective while keeping feasibility.
- This means that $\bar{y}_v \leq 1$ for all $v \in V$ because \bar{y} is an optimal solution.

Theorem

Let G = (V, E) be a bipartite graph. Then the LP relaxation (LP) has an optimal solution y^* that satisfies $y^*_v \in \{0, 1\}$ for all $v \in V$. Moreover, one can find a minimum vertex cover for G by solving the linear program (LP).

Randomized algorithm

- **1** Pick a random threshold $\theta \in (0, 1)$ uniformly at random.
- **2** Take $U_1 = \{ v \in V_1 : \bar{y}_v \ge \theta \}$ and $U_2 = \{ v \in V_2 : \bar{y}_v \ge 1 \theta \}$.
- **3** Define $y^* \in \{0,1\}^{|V|}$ as the incidence vector of $U_1 \cup U_2$.

LP-based algorithm for minimum vertex cover

Algorithm 1 LP-based algorithm for minimum vertex cover

The bipartition $V_1 \cup V_2$ of the vertex set VSolve the linear program (LP) and get an optimal solution \bar{y} Take $U_1 = \{v \in V_1 : \bar{y}_v \ge 1/2\}$ and $U_2 = \{v \in V_2 : \bar{y}_v \ge 1/2\}$ Return $U_1 \cup U_2$

LP-based proof for König's theorem

• The strong duality theorem for linear programming implies

$$\min\left\{\sum_{v\in V} y_{v}: y_{u} + y_{v} \geq 1 \quad \text{for all } uv \in E, y \in \{0,1\}^{|V|}\right\}$$

$$= \min\left\{\sum_{v\in V} y_{v}: y_{u} + y_{v} \geq 1 \quad \text{for all } uv \in E, y \in \mathbb{R}_{+}^{|V|}\right\}$$

$$= \min\left\{\sum_{e\in E} w_{e}x_{e}: \sum_{v\in V: uv\in E} x_{uv} \leq 1 \quad \text{for all } u \in V, x \in \mathbb{R}_{+}^{|E|}\right\}$$

$$= \max\left\{\sum_{e\in E} w_{e}x_{e}: \sum_{v\in V: uv\in E} x_{uv} \leq 1 \quad \text{for all } u \in V, x \in \{0,1\}^{|E|}\right\}$$

the maximum size of a matching

Combinatorial algorithm for maximum weight bipartite matching

- In Lecture 3, we learned an LP-based algorithm for maximum weight bipartite matching.
- Net we cover a combinatorial algorithm, that is known as the **Hungarian** algorithm.

Preprocessing step

- First, as we are interested in a maximum weight matching, we may discard edges with a negative weight.
- **2** Up to adding dummy vertices and dummy edges with weight zero, we obtain a complete bipartite graph $K_{n,n}$ for some $n \ge 1$.

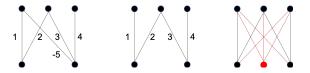


Figure: illustrating the preprocessing step

- After the preprocessing step, we may assume that $G = K_{n,n}$ for some $n \ge 1$ and $w \in \mathbb{R}^{|\mathcal{E}|}_+$.
- Then the problem boils down to finding a maximum weight perfect matching in *G*.
- As before, let the vertex set V be partitioned into V_1 amd V_2 with $|V_1| = |V_2| = n$.
- Then a maximum weight matching in G can be computed by

$$\begin{array}{ll} \text{maximize} & \sum_{e \in E} w_e x_e \\ \text{subject to} & \sum_{v \in V_2} x_{uv} \leq 1 \quad \text{for all } u \in V_1, \\ & \sum_{u \in V_1} x_{uv} \leq 1 \quad \text{for all } v \in V_2, \\ & x_e \geq 0 \quad \text{for all } e \in E. \end{array}$$

- Again, as $w_e \ge 0$ for all $e \in E$ and G is a complete bipartite graph, (1) has an optimal solution that corresponds to a perfect matching.
- Then it follows that (1) is equivalent to

$$\begin{array}{ll} \mbox{maximize} & \sum_{e \in E} w_e x_e \\ \mbox{subject to} & \sum_{v \in V_2} x_{uv} = 1 \quad \mbox{for all } u \in V_1, \\ & \sum_{u \in V_1} x_{uv} = 1 \quad \mbox{for all } v \in V_2, \\ & x_e \geq 0 \quad \mbox{for all } e \in E. \end{array}$$

• The dual of (Primal) is given by

$$\begin{array}{ll} \mbox{minimize} & \sum_{u \in V_1} y_u + \sum_{v \in V_2} z_v \\ \mbox{subject to} & y_u + z_v \geq w_{uv} & \mbox{for all } uv \in E. \end{array}$$

• The following result is a direct consequence of the **complementary slackness condition** for linear programming.

Lemma

Let M be a perfect matching in G, feasible to (Primal). Suppose that there exists a feasible solution (y, z) to (Dual) that satisfies $y_u + z_v = w_{uv}$ for every $uv \in M$. Then M is a maximum weight matching.

- Based on the lemma, the main idea behind the Hungarian algorithm is as follows.
 - (y, z) always remains feasible to (Dual), satisfying the constraints of (Dual).
 - Only an edge $uv \in E$ satisfying $y_u + z_v = w_{uv}$ can be added to our matching M.
- Once *M* becomes a perfect matching, becoming feasible to (Primal), then it will satisfy the conditions of the lemma, which guarantees that *M* is a maximum weight matching.

- To implement this idea, we introduce the notion of equality subgraphs.
- Given a feasible solution (y, z) to (Dual), we define the subgraph of G taking the edges $uv \in E$ satisfying $y_u + z_v = w_{uv}$.
- We use notation $G_{y,z}$ to denote the equality subgraph of G associated with (y, z).
 - Given a feasible solution (y, z) to (Dual), we take a maximum matching M in $G_{y,z}$.

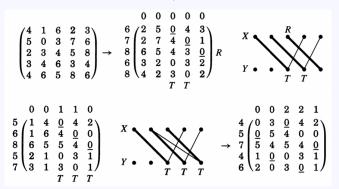
Algorithm 1 Hungarian algorithm for maximum weight bipartite matching

Input: complete bipartite graph G = (V, E) with $V = V_1 \cup V_2$ and $w \in \mathbb{R}^{|E|}_+$ Initialize $y_u = \max_{v \in V_2} w_{uv}$ for $u \in V_1$, $z_v = 0$ for $v \in V_2$ Initialize $M = \emptyset$ and $B = \emptyset$ while M is not a perfect matching **do** Construct the equality subgraph $G_{y,z}$ associated with (y, z)Set M and B as a maximum matching and a minimum vertex cover in $G_{y,z}$, respectively Set $R = V_1 \cap B$ and $T = V_2 \cap B$ Compute $\epsilon = \min \{y_u + z_v - w_{uv} : u \in V_1 - R, v \in V_2 - T\}$ Update $y_u = y_u - \epsilon$ for $u \in V_1 - R$ and $z_v = z_v + \epsilon$ for $v \in T$ end while Return M

Example

Example

Let us consider an example with $G = K_{5,5}$.



In each matrix, the rows correspond to the vertices in V_1 , and the columns are for the vertices in V_2 .

Correctness

Theorem

Let G = (V, E) be a complete bipartite graph, and let $w \in \mathbb{R}^{|E|}_+$. Then Algorithm 1 finds a maximum weight pefect matching in G.

Correctness