Lecture 4: Konig's theorem and the Hungarian algorithm

Dabeen Lee

Industrial and Systems Engineering, KAIST

2025 Winter Lecture Series on Combinatorial Optimization

January 14, 2025



Outline
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Vertex cover

® Given a graph G = (V, E), a subset B of the vertex set V is called a
vertex cover if for every edge e € E, e has an endpoint in B.

Figure: vertex cover examples

® The vertex cover problem is to find a vertex cover with the minimum
number of vertices.



Connection to bipartite matching

Proposition

Let G = (V, E) be a graph. Then the minimum size of a vertex cover for G is
greater than or equal to the maximum size of a matching in G.



Konig's theorem

Theorem (Kodnig's theorem)

Let G = (V,E) be a bipartite graph. Then the minimum size of a vertex cover
for G equals the maximum size of a matching in G.
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Figure: vertex set decomposition by the alternating tree procedure




Remarks

® The proof suggests that the augmenting path algorithm not only gives us
a maximum matching but also a minimum vertex cover.

® This means that the vertex cover problem can be solved in polynomial
time.

® However, the vertex cover problem for general graphs is known to be
NP-hard.



LP formulation for vertex cover

® As for the matching problem, vertex cover also admits an integer linear
programming formulation.

® For each vertex v € V, we use a variable y, to indicate whether v is
picked for our vertex cover B or not, i.e.,

1 if vis included in vertex cover B,
Y= .
0 otherwise.

® Then we may impose the condition that y corresponds to a vertex cover
by setting
Yoty 2>1
for all uv € E.



LP formulation for vertex cover

® Therefore, the vertex cover problem can be equivalently formulated as the
following integer linear program:

minimize E Yo

vev (|P)

subject to y,+y, >1 forall uv € E,
w€e{0,1} forallveV.

Proposition

Let G = (V, E) be a graph, not necessarily bipartite. Then solving the
optimization problem (IP) computes a minimum vertex cover for G.



LP formulation for vertex cover

® The LP relaxation of (IP) is given by

minimize Zy\,
vev Lp
subject to y,+y, >1 forall uv € E, (LP)

vy >0 forallveV.



LP formulation for vertex cover

Theorem

Let G = (V,E) be a bipartite graph. Then the LP relaxation (LP) has an
optimal solution y* that satisfies y, € {0,1} for all v € V. Moreover, one can
find a minimum vertex cover for G by solving the linear program (LP).

® Let y be an optimal solution to (LP). By the nonnegativity constraint, we
have y, > 0 forall v e V.

® If y, > 1 for some v € V, then one may replace y, with 1 to improve the
objective while keeping feasibility.

® This means that y, <1 for all v € V because y is an optimal solution.



LP formulation for vertex cover

Theorem

Let G = (V, E) be a bipartite graph. Then the LP relaxation (LP) has an
optimal solution y* that satisfies y; € {0,1} for all v € V. Moreover, one can
find a minimum vertex cover for G by solving the linear program (LP).
Randomized algorithm

©® Pick a random threshold 6 € (0, 1) uniformly at random.

Q@ Take Uu={veVi:y,>0tand o ={ve Vo:y >1-06}.

© Define y* € {0,1}!V! as the incidence vector of U; U Us.



LP formulation for vertex cover



LP formulation for vertex cover



LP-based algorithm for minimum vertex cover

Algorithm 1 LP-based algorithm for minimum vertex cover

The bipartition Vi U V, of the vertex set V

Solve the linear program (LP) and get an optimal solution ¥
Take Uy ={veWVi:y >1/2}and U ={veE V,:y >1/2}
Return Uy U U>




LP-based proof for Konig's theorem

® The strong duality theorem for linear programming implies

min{ZyV: Yoty >1 forall uv € E, yE{O,l}V}
veV

the minimum size of a vertex cover

:min{Zy\,: Yo+y>1 foralluveE, yeRJy}
vev

~—

strong duality

max {Z WeXe : Z xw <1 forallueV, xe ]Rf}

ecE veViuveE
:max{ZWexe: Z xw <1 forallueV, xe{O,l}lEl}
ecE veViuwveE

the maximum size of a matching



Combinatorial algorithm for maximum weight bipartite matching

® In Lecture 3, we learned an LP-based algorithm for maximum weight
bipartite matching.

® Net we cover a combinatorial algorithm, that is known as the Hungarian
algorithm.

Preprocessing step
@ First, as we are interested in a maximum weight matching, we may discard
edges with a negative weight.

® Up to adding dummy vertices and dummy edges with weight zero, we
obtain a complete bipartite graph K, , for some n > 1.

Figure: illustrating the preprocessing step



Hungarian algorithm

After the preprocessing step, we may assume that G = K, , for some

nZlandweR‘f‘.

Then the problem boils down to finding a maximum weight perfect

matching in G.

As before, let the vertex set V be partitioned into V4 amd V, with

[Vi| = | V2| = n.

Then a maximum weight matching in G can be computed by

maximize

subject to

E WeXe

ecE
Z xw <1 forallue W,
veV,
quv <1 forallve Vs,
ueVy

xe >0 forallecE.

(1)



Hungarian algorithm

® Again, as we > 0 for all e € E and G is a complete bipartite graph, (1)
has an optimal solution that corresponds to a perfect matching.

® Then it follows that (1) is equivalent to

maximize g WeXe

ecE
subject to Z xw =1 forallue W,
VeV, (Primal)
Z xw =1 forallve Vs,
ueVy

xe >0 forallecE.



Hungarian algorithm

® The dual of (Primal) is given by
minimize Z Yu+ Z Zy
uevy vevs (Dual)
subject to  y, 4+ 2z, > w,, forall uv € E.
® The following result is a direct consequence of the complementary
slackness condition for linear programming.

Lemma

Let M be a perfect matching in G, feasible to (Primal). Suppose that there
exists a feasible solution (y, z) to (Dual) that satisfies y, + z, = wy, for every
uv € M. Then M is a maximum weight matching.



Hungarian algorithm

® Based on the lemma, the main idea behind the Hungarian algorithm is as
follows.
® (y,z) always remains feasible to (Dual), satisfying the constraints of (Dual).
® Only an edge uv € E satisfying y, + z, = wy, can be added to our
matching M.

® Once M becomes a perfect matching, becoming feasible to (Primal), then
it will satisfy the conditions of the lemma, which guarantees that M is a
maximum weight matching.



Hungarian algorithm

® To implement this idea, we introduce the notion of equality subgraphs.

® Given a feasible solution (y, z) to (Dual), we define the subgraph of G
taking the edges uv € E satisfying y, + z, = wy,.
® \We use notation G, , to denote the equality subgraph of G associated
with (y, z).
® Given a feasible solution (y, z) to (Dual), we take a maximum matching M
in Gy ;.



Hungarian algorithm

Algorithm 1 Hungarian algorithm for maximum weight bipartite matching

Input: complete bipartite graph G = (V, E) with V = ViU V; and w € R/f!
Initialize y, = maxvev, wuy for u€ V4, z, =0forv e V2
Initialize M =@ and B=10
while M is not a perfect matching do
Construct the equality subgraph G, , associated with (y, z)
Set M and B as a maximum matching and a minimum vertex cover in
Gy .z, respectively
Set R=ViNnBand T=VW,NB
Compute e =min{ys+z. —wn: v e Vi —RveV,— T}
Update yy =y, —eforue Vi —Rand z, =z, +eforve T
end while
Return M




Example

Example

= K5’5.

Let us consider an example with G
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In each matrix, the rows correspond to the vertices in V4, and the columns are

for the vertices in V5.



Correctness

Theorem

Let G = (V,E) be a complete bipartite graph, and let w € ]R‘f‘. Then
Algorithm 1 finds a maximum weight pefect matching in G.



Correctness



