Lecture 4: König's theorem and the Hungarian algorithm

Dabeen Lee

Industrial and Systems Engineering, KAIST

2025 Winter Lecture Series on Combinatorial Optimization

January 14, 2025

Outline

- Vertex cover problem
- LP duality-based proof for König's theorem
- Hungarian algorithm for maximum weight bipartite matching

Vertex cover

• Given a graph $G = (V, E)$, a subset B of the vertex set V is called a vertex cover if for every edge $e \in E$, e has an endpoint in B.

• The vertex cover problem is to find a vertex cover with the minimum number of vertices.

Proposition

Let $G = (V, E)$ be a graph. Then the minimum size of a vertex cover for G is greater than or equal to the maximum size of a matching in G.

König's theorem

Theorem (König's theorem)

Let $G = (V, E)$ be a bipartite graph. Then the minimum size of a vertex cover for G equals the maximum size of a matching in G.

Figure: vertex set decomposition by the alternating tree procedure

Remarks

- The proof suggests that the augmenting path algorithm not only gives us a maximum matching but also a minimum vertex cover.
- This means that the vertex cover problem can be solved in polynomial time.
- However, the vertex cover problem for general graphs is known to be NP-hard.

- As for the matching problem, vertex cover also admits an integer linear programming formulation.
- For each vertex $v \in V$, we use a variable y_v to indicate whether v is picked for our vertex cover B or not, i.e.,

$$
y_v = \begin{cases} 1 & \text{if } v \text{ is included in vertex cover } B, \\ 0 & \text{otherwise.} \end{cases}
$$

• Then we may impose the condition that y corresponds to a vertex cover by setting

$$
y_u+y_v\geq 1
$$

for all $uv \in E$.

• Therefore, the vertex cover problem can be equivalently formulated as the following integer linear program:

minimize
$$
\sum_{v \in V} y_v
$$

\nsubject to $y_u + y_v \ge 1$ for all $uv \in E$,
\n $y_v \in \{0, 1\}$ for all $v \in V$. (IP)

Proposition

Let $G = (V, E)$ be a graph, not necessarily bipartite. Then solving the optimization problem (IP) computes a minimum vertex cover for G .

• The LP relaxation of [\(IP\)](#page-7-0) is given by

minimize
$$
\sum_{v \in V} y_v
$$

\nsubject to $y_u + y_v \ge 1$ for all $uv \in E$,
\n $y_v \ge 0$ for all $v \in V$. (LP)

Theorem

Let $G = (V, E)$ be a bipartite graph. Then the LP relaxation [\(LP\)](#page-8-0) has an optimal solution y^* that satisfies $y_{v}^* \in \{0,1\}$ for all $v \in V$. Moreover, one can find a minimum vertex cover for G by solving the linear program (LP) .

- Let \bar{y} be an optimal solution to [\(LP\)](#page-8-0). By the nonnegativity constraint, we have $\bar{v}_v > 0$ for all $v \in V$.
- If $\bar{y}_v > 1$ for some $v \in V$, then one may replace \bar{y}_v with 1 to improve the objective while keeping feasibility.
- This means that $\bar{y}_y \leq 1$ for all $v \in V$ because \bar{v} is an optimal solution.

Theorem

Let $G = (V, E)$ be a bipartite graph. Then the LP relaxation [\(LP\)](#page-8-0) has an optimal solution y^* that satisfies $y^*_v \in \{0,1\}$ for all $v \in V$. Moreover, one can find a minimum vertex cover for G by solving the linear program [\(LP\)](#page-8-0).

Randomized algorithm

- **0** Pick a random threshold $\theta \in (0,1)$ uniformly at random.
- **2** Take $U_1 = \{v \in V_1 : \overline{v}_v > \theta\}$ and $U_2 = \{v \in V_2 : \overline{v}_v > 1 \theta\}.$
- ∂ Define $y^* \in \{0,1\}^{|V|}$ as the incidence vector of $U_1 \cup U_2.$

LP-based algorithm for minimum vertex cover

Algorithm 1 LP-based algorithm for minimum vertex cover

The bipartition $V_1 \cup V_2$ of the vertex set V Solve the linear program [\(LP\)](#page-8-0) and get an optimal solution \bar{y} Take $U_1 = \{v \in V_1 : \bar{y}_v \ge 1/2\}$ and $U_2 = \{v \in V_2 : \bar{y}_v \ge 1/2\}$ Return $U_1 \cup U_2$

LP-based proof for König's theorem

• The strong duality theorem for linear programming implies

$$
\min\left\{\sum_{v\in V} y_v : y_u + y_v \ge 1 \text{ for all } uv \in E, y \in \{0,1\}^{|V|}\right\}
$$
\n
$$
= \min\left\{\sum_{v\in V} y_v : y_u + y_v \ge 1 \text{ for all } uv \in E, y \in \mathbb{R}_+^{|V|}\right\}
$$
\n
$$
= \min\left\{\sum_{e\in E} y_e : y_u + y_v \ge 1 \text{ for all } uv \in E, y \in \mathbb{R}_+^{|V|}\right\}
$$
\n
$$
= \max\left\{\sum_{e\in E} w_e x_e : \sum_{v\in V: uv \in E} x_{uv} \le 1 \text{ for all } u \in V, x \in \mathbb{R}_+^{|E|}\right\}
$$
\n
$$
= \max\left\{\sum_{e\in E} w_e x_e : \sum_{v\in V: uv \in E} x_{uv} \le 1 \text{ for all } u \in V, x \in \{0,1\}^{|E|}\right\}
$$
\nthe maximum size of a matching

Combinatorial algorithm for maximum weight bipartite matching

- In Lecture 3, we learned an LP-based algorithm for maximum weight bipartite matching.
- Net we cover a combinatorial algorithm, that is known as the **Hungarian** algorithm.

Preprocessing step

- **1** First, as we are interested in a maximum weight matching, we may discard edges with a negative weight.
- **2** Up to adding dummy vertices and dummy edges with weight zero, we obtain a complete bipartite graph $K_{n,n}$ for some $n \geq 1$.

Figure: illustrating the preprocessing step

- After the preprocessing step, we may assume that $G = K_{n,n}$ for some $n \geq 1$ and $w \in \mathbb{R}^{|E|}_+$.
- Then the problem boils down to finding a maximum weight perfect matching in G.
- As before, let the vertex set V be partitioned into V_1 amd V_2 with $|V_1| = |V_2| = n.$
- Then a maximum weight matching in G can be computed by

maximize
$$
\sum_{e \in E} w_e x_e
$$

\nsubject to
$$
\sum_{v \in V_2} x_{uv} \le 1 \text{ for all } u \in V_1,
$$

$$
\sum_{u \in V_1} x_{uv} \le 1 \text{ for all } v \in V_2,
$$

$$
x_e \ge 0 \text{ for all } e \in E.
$$

$$
(1)
$$

- Again, as $w_e \ge 0$ for all $e \in E$ and G is a complete bipartite graph, [\(1\)](#page-16-0) has an optimal solution that corresponds to a perfect matching.
- Then it follows that (1) is equivalent to

maximize
$$
\sum_{e \in E} w_e x_e
$$

\nsubject to
$$
\sum_{v \in V_2} x_{uv} = 1 \text{ for all } u \in V_1,
$$

\n
$$
\sum_{u \in V_1} x_{uv} = 1 \text{ for all } v \in V_2,
$$

\n
$$
x_e \ge 0 \text{ for all } e \in E.
$$

\n(Primal)

• The dual of [\(Primal\)](#page-17-0) is given by

minimize
$$
\sum_{u \in V_1} y_u + \sum_{v \in V_2} z_v
$$

subject to $y_u + z_v \ge w_{uv}$ for all $uv \in E$. (Dual)

• The following result is a direct consequence of the complementary slackness condition for linear programming.

Lemma

Let M be a perfect matching in G , feasible to $(Primal)$. Suppose that there exists a feasible solution (y, z) to $(Dual)$ that satisfies $y_u + z_v = w_{uv}$ for every $uv \in M$. Then M is a maximum weight matching.

- Based on the lemma, the main idea behind the Hungarian algorithm is as follows.
	- (y, z) always remains feasible to [\(Dual\)](#page-18-0), satisfying the constraints of (Dual).
	- Only an edge $uv \in E$ satisfying $y_{u} + z_{v} = w_{uv}$ can be added to our matching M.
- Once *M* becomes a perfect matching, becoming feasible to [\(Primal\)](#page-17-0), then it will satisfy the conditions of the lemma, which guarantees that M is a maximum weight matching.

- To implement this idea, we introduce the notion of equality subgraphs.
- Given a feasible solution (y, z) to $(Dual)$, we define the subgraph of G taking the edges $uv \in E$ satisfying $y_u + z_v = w_{uv}$.
- We use notation $G_{v,z}$ to denote the equality subgraph of G associated with (y, z) .
	- Given a feasible solution (y, z) to [\(Dual\)](#page-18-0), we take a maximum matching M in $G_{v,z}$.

Algorithm 1 Hungarian algorithm for maximum weight bipartite matching

Input: complete bipartite graph $G = (V, E)$ with $V = V_1 \cup V_2$ and $w \in \mathbb{R}^{|E|}_+$ Initialize $y_u = \max_{v \in V_2} w_{uv}$ for $u \in V_1$, $z_v = 0$ for $v \in V_2$ Initialize $M = \emptyset$ and $B = \emptyset$ while M is not a perfect matching do Construct the equality subgraph $G_{v,z}$ associated with (y, z) Set M and B as a maximum matching and a minimum vertex cover in G_{v} , respectively Set $R = V_1 \cap B$ and $T = V_2 \cap B$ Compute $\epsilon = \min \{y_u + z_v - w_{uv} : u \in V_1 - R, v \in V_2 - T\}$ Update $y_u = y_u - \epsilon$ for $u \in V_1 - R$ and $z_v = z_v + \epsilon$ for $v \in T$ end while Return M

Example

Example

Let us consider an example with $G = K_{5,5}$.

In each matrix, the rows correspond to the vertices in V_1 , and the columns are for the vertices in V_2 .

Correctness

Theorem

Let $G=(V,E)$ be a complete bipartite graph, and let $w\in\mathbb{R}_+^{|E|}$. Then Algorithm 1 finds a maximum weight pefect matching in G.

Correctness