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Outline

The first part of this lecture covers perfect matching and explains Hall’s marriage theorem char-
acterizing the existence of a perfect matching in a bipartite graph. Then the second part is about
the vertex cover problem and König’s theorem. We provide a combinatorial proof and an linear
programming-based proof for König’s theorem.

1 Perfect matching and Hall’s marriage theorem

Given a graph G = (V,E), not necessarily bipartite, a matching M in G is perfect if every vertex
v ∈ V is incident to an edge in M . In other words, every vertex is attached to a matching edge in
a perfect matching. The first graph of Figure 4.1 is a perfect matching in a bipartite graph while
the second one shows a perfect matching in a non-bipartite graph.

Figure 4.1: perfect matching examples

We can compute a perfect matching by solving an optimization problem described as follows. As
in the previous section, we use xe to indicate whether e is picked for our matching M or not. To
guarantee that M is a perfect matching, we impose the constraint∑

v∈V :uv∈E
xv = 1

for any vertex u ∈ V . Given the edge weight vector w ∈ R|E|, a maximum weight perfect matching
can be computed by the following integer linear program:

maximize
∑
e∈E

wexe

subject to
∑

v∈V :uv∈E
xuv = 1 for all u ∈ V ,

xe ∈ {0, 1} for all e ∈ E.

(4.1)

A matching always exists as the empty set is trivially a matching, but a perfect matching does
not always exsits even for a bipartite graph. Figure 4.2 is a bipartite graph that does not have
a perfect matching. This means that the integer linear program (4.1) may not have a feasible
solution. For bipartite graphs, we have a simple structural characterization for the existence of
a perfect matching. The characterization is referred to as Hall’s marriage theorem. Given a
subset S ⊆ V , N(S) denotes the set of vertices that are adjacent to any vertex in S.
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Figure 4.2: a bipartite graph that does not admit a perfect matching

Theorem 4.1 (Hall’s marriage theorem). Let G = (V,E) be a bipartite graph where V is partitioned
into V1 and V2. Then G has a perfect matching if and only if |N(S)| ≥ |S| for any S ⊆ V1.

Proof. Since G is bipartite, N(S) ⊆ V2 for any S ⊆ V1. Suppose that |N(S)| < |S| for some S ⊆ V1.
As the vertices in S can be matched to only the vertices in N(S), |N(S)| < |S| means that not all
vertices of S can be matched. Hence, G has no perfect matching in this case.

Next suppose that G has no perfect matching. Let M be a maximum matching. Since M is not
perfect, there is an M -exposed vertex r. Starting from r, we build an M -alternating tree using the
alternating tree procedure. Since G has no M -augmenting path, the procedure ends up with an
M -alternating tree rooted at r as illustrated in Figure 4.3 where U is the set of vertices at an odd
level of the tree and W collects the vertices at an even level. Moreover, we proved that the vertices

Figure 4.3: the M -alternating tree from an M -exposed vertex

in the set W are adjacent to none of the vertices in V \ (W ∪ U). This implies that N(W ) = U .
As |W | = |U |+ 1, we have |N(W )| < |W |, as required.

The stable matching problem also admits a linear programming-based solution.

2 Vertex cover problem

So far, we have focused on the bipartite matching problem. Just for a moment, let us turn our
attention to a different problem, yet it is closely related to bipartite matching. Given a graph
G = (V,E), a subset B of the vertex set V is called a vertex cover if for every edge e ∈ E, e
has an endpoint in B. The vertex cover problem is to find a vertex cover with the minimum
number of vertices. The following provides a bridge between the matching problem and the vertex
cover problem.

2



Figure 4.4: vertex cover examples

Proposition 4.2. Let G = (V,E) be a graph. Then the minimum size of a vertex cover for G is
greater than or equal to the maximum size of a matching in G.

Proof. Let M be a maximum matching of G. Note that the edges in M are pairwise vertex-disjoint.
This means that any vertex cover B contains at least one endpoint of each edge in M , which implies
that |B| ≥ |M |.

For a bipartite graph, we can derive the folllowing stronger result.

Theorem 4.3 (König’s theorem). Let G = (V,E) be a bipartite graph. Then the minimum size of
a vertex cover for G equals the maximum size of a matching in G.

Proof. Remember the augmenting path algorithm for maximum bipartite matching and the alter-
nating tree procedure to find an M -augmenting path. Suppose that M is a maximum matching in
G. Then we know that G has no M -augmenting path. In this case, the alternating tree procedure
ends up with a decomposition of the vertex set V into

V = (W1 ∪ V1) ∪ · · · ∪ (Wk ∪ Vk)

for some k illustrated as in Figure 4.5. We proved that every edge e ∈ E is incident to a vertex in

Figure 4.5: vertex set decomposition by the alternating tree procedure

V!∪· · ·∪Vk. This means that V1∪· · ·∪Vk is a vertex cover. Moreover, recall that |M | = |V1∪· · ·∪Vk|.
By Proposition 4.2, it follows that V1 ∪ · · · ∪ Vk is a minimum vertex cover and its size equals the
maximum size of a matching, as required.

The proof of Theorem 4.3 suggests that the augmenting path algorithm with the alternating tree
procedure not only gives us a maximum matching but also a minimum vertex cover. This means
that the vertex cover problem can be solved in polynomial time, but the vertex cover problem for
general graphs is known to be NP-hard.
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3 Linear programming duality-based proof for König’s theorem

As for the matching problem, vertex cover also admits an integer linear programming formulation.
For each vertex v ∈ V , we use a variable yv to indicate whether v is picked for our vertex cover B
or not, i.e.,

yv =

{
1 if v is included in vertex cover B,

0 otherwise.

Then we may impose the condition that y corresponds to a vertex cover by setting

yu + yv ≥ 1

for all uv ∈ E. Therefore, the vertex cover problem can be equivalently formulated as the following
integer linear program:

minimize
∑
v∈V

yv

subject to yu + yv ≥ 1 for all uv ∈ E,
yv ∈ {0, 1} for all v ∈ V .

(4.2)

Proposition 4.4. Let G = (V,E) be a graph, not necessarily bipartite. Then solving the optimiza-
tion problem (4.2) computes a minimum vertex cover for G.

The LP relaxation of (4.2) is given by

minimize
∑
v∈V

yv

subject to yu + yv ≥ 1 for all uv ∈ E,
yv ≥ 0 for all v ∈ V .

(4.3)

Theorem 4.5. Let G = (V,E) be a bipartite graph. Then the LP relaxation (4.3) has an optimal
solution y∗ that satisfies y∗v ∈ {0, 1} for all v ∈ V . Moreover, one can find a minimum vertex cover
for G by solving the linear program (4.3).

Proof. Let ȳ be an optimal solution to (4.3). By the nonnegativity constraint, we have ȳv ≥ 0 for
all v ∈ V . If ȳv > 1 for some v ∈ V , then one may replace ȳv with 1 to improve the objective while
keeping feasibility. This means that ȳv ≤ 1 for all v ∈ V because ȳ is an optimal solution.

Let the vertex V be partitioned into V1 and V2. Then we run the following procedure.

1. Pick a random threshold θ ∈ (0, 1) uniformly at random.

2. Take U1 = {v ∈ V1 : ȳv ≥ θ} and U2 = {v ∈ V2 : ȳv ≥ 1− θ}.

3. Define y∗ ∈ {0, 1}|V | as the incidence vector of U1 ∪ U2.

Let uv ∈ E with u ∈ V1 and v ∈ V2. Note that either u ∈ U1 or v ∈ V1 holds, for otherwise,
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ȳu + ȳv < θ + (1− θ) = 1. This shows that U1 ∪ U2 is a vertex cover. Note that

Eθ

[∑
v∈V

y∗v

]
=

∑
v∈V1

Eθ [y∗v ] +
∑
v∈V2

Eθ [y∗v ]

=
∑
v∈V1

Pθ [ȳv ≥ θ] +
∑
v∈V2

Pθ [ȳv ≥ 1− θ]

=
∑
v∈V1

ȳv +
∑
v∈V2

ȳv

=
∑
v∈V

ȳv

(4.4)

where the first equality is by the linearity of expectation, the second equality is by the definition
of U1 and U2, and the third equality holds because θ is chosen uniformly at random.

Recall that y∗ under any threshold θ corresponds to a vertex cover, so we have∑
v∈V

y∗v ≥
∑
v∈V

ȳv.

Then it follows from (4.4) that for any threshold θ ∈ (0, 1), y∗ ∈ {0, 1}|V | satisfies∑
v∈V

y∗v =
∑
v∈V

ȳv.

This in turn implies that y∗ for any choice of θ corresponds to a minimum vertex cover.

Consequently, the optimal value of (4.3) equals that of (4.2) when the graph G is bipartite. More-
over, the proof of Theorem 4.5 provides the following algorithm for computing a minimum vertex
cover in a bipartite graph. The proof of Theorem 4.5 guarantees that Algorithm 1 returns a

Algorithm 1 LP-based algorithm for minimum vertex cover

The bipartition V1 ∪ V2 of the vertex set V
Solve the linear program (4.3) and get an optimal solution ȳ
Take U1 = {v ∈ V1 : ȳv ≥ 1/2} and U2 = {v ∈ V2 : ȳv ≥ 1/2}
Return U1 ∪ U2

minimum vertex cover for a bipartite graph.

Lastly, we conclude this lecture by describing an alternate proof for König’s theorem stating that
the minimum size of a vertex cover equals the maximum size of a matching in a bipartite graph.
Recall that the optimal value of the linear program

maximize
∑
e∈E

wexe

subject to
∑

v∈V :uv∈E
xuv ≤ 1 for all u ∈ V ,

xe ≥ 0 for all e ∈ E

(4.5)

is equal to the maximum size of a matching. Moreover, we have just proved that the optimal value
of the linear program (4.3) is equal to the minimum size of a vertex cover by Theorem 4.5. In fact,
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the linear program (4.3) is the linear programming dual of (4.5). Then by the strong duality
theorem for linear programming,

min

{∑
v∈V

yv : yu + yv ≥ wuv for all uv ∈ E, y ∈ R|V |+

}

= max

{∑
e∈E

wexe :
∑

v∈V :uv∈E
xuv ≤ 1 for all u ∈ V , x ∈ R|E|+

}
.

This leads us to the conclusion that the minimum size of a vertex cover equals the maximum size
of a matching in a bipartite graph, which is König’s theorem.
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