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Outline

The first part of this lecture covers perfect matching and explains Hall’s marriage theorem char-
acterizing the existence of a perfect matching in a bipartite graph. Then the second part is about
the vertex cover problem and Konig’s theorem. We provide a combinatorial proof and an linear
programming-based proof for Kénig’s theorem.

1 Perfect matching and Hall’s marriage theorem

Given a graph G = (V, E), not necessarily bipartite, a matching M in G is perfect if every vertex
v € V is incident to an edge in M. In other words, every vertex is attached to a matching edge in
a perfect matching. The first graph of Figure 4.1 is a perfect matching in a bipartite graph while
the second one shows a perfect matching in a non-bipartite graph.

—

Figure 4.1: perfect matching examples

We can compute a perfect matching by solving an optimization problem described as follows. As
in the previous section, we use . to indicate whether e is picked for our matching M or not. To
guarantee that M is a perfect matching, we impose the constraint

Z T, =1

veViuwveE

for any vertex u € V. Given the edge weight vector w € RIZ!, a maximum weight perfect matching
can be computed by the following integer linear program:

maximize E Wele
eck

subject to Z Tyw =1 forallueV, (4.1)
veVuwvel

xz. € {0,1} foralle € E.

A matching always exists as the empty set is trivially a matching, but a perfect matching does
not always exsits even for a bipartite graph. Figure 4.2 is a bipartite graph that does not have
a perfect matching. This means that the integer linear program (4.1) may not have a feasible
solution. For bipartite graphs, we have a simple structural characterization for the existence of
a perfect matching. The characterization is referred to as Hall’s marriage theorem. Given a
subset S C V, N(S) denotes the set of vertices that are adjacent to any vertex in S.
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Figure 4.2: a bipartite graph that does not admit a perfect matching

Theorem 4.1 (Hall’'s marriage theorem). Let G = (V, E) be a bipartite graph where V is partitioned
into Vi and Va. Then G has a perfect matching if and only if [N (S)| > |S| for any S C V;.

Proof. Since G is bipartite, N(S) C V5 for any S C V;. Suppose that |N(S)| < |S| for some S C ;.
As the vertices in S can be matched to only the vertices in N(S), [N(S)| < |S| means that not all
vertices of S can be matched. Hence, G has no perfect matching in this case.

Next suppose that G has no perfect matching. Let M be a maximum matching. Since M is not
perfect, there is an M-exposed vertex r. Starting from 7, we build an M-alternating tree using the
alternating tree procedure. Since G has no M-augmenting path, the procedure ends up with an
M-alternating tree rooted at r as illustrated in Figure 4.3 where U is the set of vertices at an odd
level of the tree and W collects the vertices at an even level. Moreover, we proved that the vertices
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Figure 4.3: the M-alternating tree from an M-exposed vertex

in the set W are adjacent to none of the vertices in V' \ (W U U). This implies that N(W) = U.
As |[W| = |U| + 1, we have |[N(W)| < |[W|, as required. O

The stable matching problem also admits a linear programming-based solution.

2 Vertex cover problem

So far, we have focused on the bipartite matching problem. Just for a moment, let us turn our
attention to a different problem, yet it is closely related to bipartite matching. Given a graph
G = (V,E), a subset B of the vertex set V is called a vertex cover if for every edge e € E, e
has an endpoint in B. The vertex cover problem is to find a vertex cover with the minimum
number of vertices. The following provides a bridge between the matching problem and the vertex
cover problem.



Figure 4.4: vertex cover examples

Proposition 4.2. Let G = (V, E) be a graph. Then the minimum size of a vertex cover for G is
greater than or equal to the mazimum size of a matching in G.

Proof. Let M be a maximum matching of G. Note that the edges in M are pairwise vertex-disjoint.
This means that any vertex cover B contains at least one endpoint of each edge in M, which implies
that |B| > |M|. O

For a bipartite graph, we can derive the folllowing stronger result.

Theorem 4.3 (Konig’s theorem). Let G = (V, E) be a bipartite graph. Then the minimum size of
a vertex cover for G equals the mazimum size of a matching in G.

Proof. Remember the augmenting path algorithm for maximum bipartite matching and the alter-
nating tree procedure to find an M-augmenting path. Suppose that M is a maximum matching in
G. Then we know that G has no M-augmenting path. In this case, the alternating tree procedure
ends up with a decomposition of the vertex set V into

V:(Wluvl)U-HU(WkUVk)

for some k illustrated as in Figure 4.5. We proved that every edge e € E is incident to a vertex in
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Figure 4.5: vertex set decomposition by the alternating tree procedure

WU- - -UVj. This means that V3U- - -UV} is a vertex cover. Moreover, recall that |M| = [ViU---UV].
By Proposition 4.2, it follows that V4 U .- U Vj is a minimum vertex cover and its size equals the
maximum size of a matching, as required. ]

The proof of Theorem 4.3 suggests that the augmenting path algorithm with the alternating tree
procedure not only gives us a maximum matching but also a minimum vertex cover. This means
that the vertex cover problem can be solved in polynomial time, but the vertex cover problem for
general graphs is known to be NP-hard.



3 Linear programming duality-based proof for Konig’s theorem

As for the matching problem, vertex cover also admits an integer linear programming formulation.
For each vertex v € V, we use a variable g, to indicate whether v is picked for our vertex cover B
or not, i.e.,

1 if v is included in vertex cover B,
Yo = .
0 otherwise.

Then we may impose the condition that ¢ corresponds to a vertex cover by setting
Yu + Yo > 1

for all uv € E. Therefore, the vertex cover problem can be equivalently formulated as the following
integer linear program:

minimize Z Yo
veV
subject to Yy, + 1y, > 1 for all uv € E,

yp € {0,1} forallve V.

(4.2)

Proposition 4.4. Let G = (V, E) be a graph, not necessarily bipartite. Then solving the optimiza-
tion problem (4.2) computes a minimum vertex cover for G.

The LP relaxation of (4.2) is given by

minimize Z Yo
veV
subject to Yy, + 1y, > 1 for all uv € E,

Yo >0 forallveV.

(4.3)

Theorem 4.5. Let G = (V, E) be a bipartite graph. Then the LP relazation (4.3) has an optimal
solution y* that satisfies y; € {0,1} for allv € V.. Moreover, one can find a minimum vertex cover
for G by solving the linear program (4.3).

Proof. Let 3 be an optimal solution to (4.3). By the nonnegativity constraint, we have g, > 0 for
allv e V. If g, > 1 for some v € V, then one may replace ¥, with 1 to improve the objective while
keeping feasibility. This means that 3, < 1 for all v € V because ¢ is an optimal solution.

Let the vertex V be partitioned into Vi and V5. Then we run the following procedure.

1. Pick a random threshold 6 € (0, 1) uniformly at random.
2. Take Uy ={veVi:gy,>0tand Uy ={v e Vo :y, >1—0}.

3. Define y* € {0,1}!V as the incidence vector of Uy U Us.

Let wv € E with u € V4 and v € V5. Note that either u € Uy or v € Vi holds, for otherwise,



Ju + Yo < 0+ (1 — ) = 1. This shows that U; U Us is a vertex cover. Note that

> y;] = > Eolys]+ Y Eoly]

veV veVy veV)

= Polp =01+ > Polgo>1-0]

Eo

IS% vEVs (44)
=D Gt D

veEV] veVy
=0

veV

where the first equality is by the linearity of expectation, the second equality is by the definition
of Uy and Us, and the third equality holds because 6 is chosen uniformly at random.

Recall that y* under any threshold 6 corresponds to a vertex cover, so we have

veV veV

Then it follows from (4.4) that for any threshold 6 € (0,1), y* € {0,1}V! satisfies
D=2 b
veV veV

This in turn implies that y* for any choice of 6 corresponds to a minimum vertex cover. O

Consequently, the optimal value of (4.3) equals that of (4.2) when the graph G is bipartite. More-
over, the proof of Theorem 4.5 provides the following algorithm for computing a minimum vertex
cover in a bipartite graph. The proof of Theorem 4.5 guarantees that Algorithm 1 returns a

Algorithm 1 LP-based algorithm for minimum vertex cover

The bipartition Vi U Vs of the vertex set V

Solve the linear program (4.3) and get an optimal solution g
Take Uy ={ve Vi 4, >1/2} and Uy ={v € Va:y, > 1/2}
Return U; U Uy

minimum vertex cover for a bipartite graph.

Lastly, we conclude this lecture by describing an alternate proof for Konig’s theorem stating that
the minimum size of a vertex cover equals the maximum size of a matching in a bipartite graph.
Recall that the optimal value of the linear program

maximize Z Wele
eck

subject to Z Tup <1 forallueV, (4.5)
veViuwveR
Te >0 foralleec F

is equal to the maximum size of a matching. Moreover, we have just proved that the optimal value
of the linear program (4.3) is equal to the minimum size of a vertex cover by Theorem 4.5. In fact,
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the linear program (4.3) is the linear programming dual of (4.5). Then by the strong duality
theorem for linear programming,

min{Zyv: Yu + Yo = Wy, Tfor all uv € E, yERLYl}

veV
:max{Zweme: Z Ty <1 forallueV,xeR'f'}.
eckE veViuwveE

This leads us to the conclusion that the minimum size of a vertex cover equals the maximum size
of a matching in a bipartite graph, which is Konig’s theorem.
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