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Outline

• (Recap) Augmenting path algorithm with the alternating tree procedure.

• Maximum weight bipartite matching.

• Linear programming-based method.

• (If time allows) Perfect matching and Hall’s marriage theorem.
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Augmenting paths

• Let G = (V ,E) be a bipartite graph, and let M be a matching of G .

• We say that a vertex v ∈ V is M-exposed if v is not connected to an
edge in M.

• We say that a path with a sequence of edges e1, . . . , ek is M-alternating if
for every two consecutive edges ei and ei+1, either ei ∈ M, ei+1 /∈ M or
ei /∈ M, ei+1 ∈ M holds.

Figure: an M-alternating path and an M-augmenting path

• An M-augmenting path is an M-alternating path if the first and last
vertices are M-exposed.
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Augmenting paths

• The key idea is that if there is an M-augmenting path, we can improve the
matching.

Figure: improving the matching by an augmenting path

• On the augmenting path, we switch the role of the matching edges and
that of the edges not in the matching.
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Augmenting paths

• Given a matching M and an M-augmenting path P, their symmetric
difference M ⊕ P is obtained from M after augmenting the edges of P.

Lemma

Let G = (V ,E) be a graph, not necessarily bipartite. Let M be a matching,
and let P be an M-augmenting path. Then M ⊕ P is a matching of G with
|M ⊕ P| = |M|+ 1.

Theorem

Let G = (V ,E) be a graph, not necessarily bipartite, and let M be a matching.
Then M is a maximum matching if and only if there is no M-augmenting path
in G.

5/31



Augmenting path algorithm

Algorithm 1 Augmenting path algorithm for maximum bipartite matching

Initialize M = ∅.
while there is an M-augmenting path do

Find an M-augmenting path P
Update M as M = M ⊕ P

end while
Return M

• As an augmenting path increases the matching size by 1, the algorithm
finds at most |V |/2 augmenting paths.
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Alternating tree procedure

• The algorithm builds a tree structure starting from an M-exposed vertex
as its root.

• We call such a tree an M-alternating tree.
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Alternating tree procedure

Theorem

Let G = (V ,E) be a bipartite graph, and let M be a matching. If ?? does not
return an M-augmenting path, then G contains no M-augmenting path as a
subgraph.

Figure: the first M-alternating tree
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Alternating tree procedure

Figure: a partition of V with M-alternating trees
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Alternating tree procedure

Figure: another illustration of the partition
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Maximum weight matching

• Maximum matching seeks to maximize the number of edges in a
matching, in which individual edges are treated equally.

• Some edges can be more important than others, captured by edge
weights.

• With the edge weights, an alternate objective is to find a matching that
maximizes the total weight sum of its edges.

• New objective:

maximize
∑
e∈M

we︸︷︷︸
the weight of edge e

.

• This is referred to as the maximum weight bipartite matching problem.

• One may extend the augmenting path algorithm to the weighted case, let
us discuss another method that has a slightly different flavor.
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Formulating as an optimization problem

Variables

• For each edge e ∈ E , use variable xe to indicate whether e is picked for
our matching M or not, i.e.,

xe =

{
1 if e is included in matching M,

0 otherwise.

• In this case, x ∈ {0, 1}|E | is the incidence vector, or the characteristic
vector, of matching M given by

M = {e ∈ E : xe = 1}.

• Then we have ∑
e∈M

we =
∑
e∈E

wexe .
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Formulating as an optimization problem

Constraints

• However, not all x ∈ {0, 1}|E | corresponds to a matching.

• What we know is that a vertex u ∈ V is incident to at most one edge of a
matching.

• We may impose the condition by setting∑
v∈V :uv∈E

xuv ≤ 1 (degree)

where the sum is taken over the neighbors of u.

Lemma

Let G = (V ,E) be a graph, not necessarily bipartite, and let x ∈ {0, 1}|E |.
Then x satisfies (degree) for all u ∈ V if and only if x is the incidence vector of
some matching M of G.
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Formulating as an optimization problem

Optimization problem

• Then the following computes a maximum weight matching:

maximize
∑
e∈E

wexe

subject to
∑

v∈V :uv∈E

xuv ≤ 1 for all u ∈ V ,

xe ∈ {0, 1} for all e ∈ E .

(IP)

• This is to select a vector x that achieves the maximum value of
∑

e∈E wexe

among the vectors satisfying (degree) for all u ∈ V and x ∈ {0, 1}|E |.
• For (IP), constraint (degree) is referred to as the degree constraint.

• Constraint x ∈ {0, 1}|E | is called the binary constraint.
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Formulating as an optimization problem

maximize
∑
e∈E

wexe

subject to
∑

v∈V :uv∈E

xuv ≤ 1 for all u ∈ V ,

xe ∈ {0, 1} for all e ∈ E .

(IP)

Proposition

Let G = (V ,E) be a graph, not necessarily bipartite, and let w ∈ R|E |. Then
solving the optimization problem (IP) computes a maximum weight matching
in G .
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Formulating as an optimization problem

maximize
∑
e∈E

wexe

subject to
∑

v∈V :uv∈E

xuv ≤ 1 for all u ∈ V ,

xe ∈ {0, 1} for all e ∈ E .

(IP)

• In (IP), both the objective
∑

e∈E wexe and the constraint
∑

v∈V :uv∈E xuv
are linear functions in x .

• Here, a linear function in x is a function of the form

c>x =
∑
e∈E

cexe for some c ∈ R|E |.

• An optimization problem whose objective and constraints are given by
linear functions is called a linear program.

• However, the binary constraint in (IP) generates discontinuity and thus
cannot be represented by a linear function
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Formulating as an optimization problem

maximize
∑
e∈E

wexe

subject to
∑

v∈V :uv∈E

xuv ≤ 1 for all u ∈ V ,

xe ∈ {0, 1} for all e ∈ E .

(IP)

• However, the binary constraint in (IP) generates discontinuity and thus
cannot be represented by a linear function.

• When the objective and constraints except for the binary constraint on its
variables are given by linear functions, it is called a binary linear program.

• In general, a binary linear program is an integer linear program which in
general can take any integer-valued variables.

• It is known that integer linear programming and binary linear programming
are NP-hard.

• Linear programming admits a polynomial time algorithm such as the
ellipsoid method and the interior-point algorithm.
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LP relaxation

• A common approach to tackle an integer linear program is to obtain its
linear programming (LP) relaxation.

• The LP relaxation relaxes and removes the constraints to impose that
the variables have integer values, and it becomes a linear program.

• The LP relaxation of (IP) is given by

maximize
∑
e∈E

wexe

subject to
∑

v∈V :uv∈E

xuv ≤ 1 for all u ∈ V ,

xe ≥ 0 for all e ∈ E

(LP)

• Any x satisfying the constraints of (LP) would have xe ≤ 1 for all e ∈ E ,
because xe appears in (degree).
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LP relaxation

Lemma

Let G = (V ,E) be a graph, not necessarily bipartite, and let w ∈ R|E |. Then
the optimal value of the LP relaxation (LP) is greater than or equal to the
optimal value of (IP).

maximize
∑
e∈E

wexe

subject to
∑

v∈V :uv∈E

xuv ≤ 1 for all u ∈ V ,

xe ≥ 0 for all e ∈ E

(LP)

• The linear program (LP) provides an upper bound on the maximum size of
a matching in any graph that is not necessarily bipartite.

• However, an optimal solution x∗ to (LP) can have fractional parts in (0, 1)
in which case x∗ does not correspond to a matching.

• Nevertheless, we can prove that bipartite graphs do not have such an
issue.
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Exactness of the LP relaxation for bipartite graphs

Theorem

Let G = (V ,E) be a bipartite graph, and let w ∈ R|E |. Then the LP
relaxation (LP) has an optimal solution x∗ that satisfies x∗e ∈ {0, 1} for all
e ∈ E. Moreover, one can find a maximum matching in G by solving the linear
program (LP).

• Let x̄ ∈ [0, 1]|E | be an optimal solution to (LP).

• Consider S = {e ∈ E : x̄e > 0} and the subgraph H of G obtained by
deleting the edges that are not in S .

• S may have cycles and large trees.

• We break the cycles and trees to obtain a matching.
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Exactness of the LP relaxation for bipartite graphs

Breaking cycles
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Exactness of the LP relaxation for bipartite graphs

Breaking cycles
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Exactness of the LP relaxation for bipartite graphs

Breaking trees
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Exactness of the LP relaxation for bipartite graphs

Breaking trees
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LP-based algorithm for maximum weight bipartite matching

Algorithm 1 LP-based algorithm for maximum weight bipartite matching

Solve the linear program (LP) and get an optimal solution x̄
Take S = {e ∈ E : x̄e > 0} and the corresponding subgraph H
while H contains a cycle do

Find a cycle C in H
Break C by updating x̄ and S

end while
while H contains a tree with at least three vertices do

Take a connected component T of H
Break T by updating x̄ and S

end while
Return S

• In practice, we may use the simplex method for solving the LP
relaxation (LP).

• For (LP), we can in fact argue that the simplex method directly finds an
optimal solution x̄ with x̄e ∈ {0, 1} for all e ∈ E .
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Perfect matching

• Given a graph G = (V ,E), not necessarily bipartite, a matching M in G is
perfect if every vertex v ∈ V is incident to an edge in M.

• In other words, every vertex is attached to a matching edge in a perfect
matching.
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Maximum weight perfect matching

• We can compute a perfect matching by solving an optimization problem
described as follows.

• As in the previous section, we use xe to indicate whether e is picked for
our matching M or not.

• To guarantee that M is a perfect matching, we impose the constraint∑
v∈V :uv∈E

xv = 1

for any vertex u ∈ V .

• Optimization problem:

maximize
∑
e∈E

wexe

subject to
∑

v∈V :uv∈E

xuv = 1 for all u ∈ V ,

xe ∈ {0, 1} for all e ∈ E .

(Perfect)
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Maximum weight perfect matching

• A matching always exists as the empty set is trivially a matching.

• However, aa perfect matching does not always exsits even for a bipartite
graph.

Figure: a bipartite graph that does not admit a perfect matching
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Hall’s marriage theorem

• This means that the integer linear program (Perfect) may not have a
feasible solution.

• For bipartite graphs, we have a simple structural characterization for the
existence of a perfect matching.

• The characterization is referred to as Hall’s marriage theorem.

• Given a subset S ⊆ V , N(S) denotes the set of vertices that are adjacent
to any vertex in S .

Theorem (Hall’s marriage theorem)

Let G = (V ,E) be a bipartite graph where V is partitioned into V1 and V2.
Then G has a perfect matching if and only if |N(S)| ≥ |S | for any S ⊆ V1.
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Hall’s marriage theorem

Theorem (Hall’s marriage theorem)

Let G = (V ,E) be a bipartite graph where V is partitioned into V1 and V2.
Then G has a perfect matching if and only if |N(S)| ≥ |S | for any S ⊆ V1.
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Hall’s marriage theorem

Theorem (Hall’s marriage theorem)

Let G = (V ,E) be a bipartite graph where V is partitioned into V1 and V2.
Then G has a perfect matching if and only if |N(S)| ≥ |S | for any S ⊆ V1.

Figure: the M-alternating tree from an M-exposed vertex
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