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Outline

® (Recap) Augmenting path algorithm with the alternating tree procedure.
® Maximum weight bipartite matching.

® |inear programming-based method.

(If time allows) Perfect matching and Hall's marriage theorem.



Augmenting paths

® Let G = (V, E) be a bipartite graph, and let M be a matching of G.

® We say that a vertex v € V is M-exposed if v is not connected to an
edge in M.

® \We say that a path with a sequence of edges ey, ..., e is M-alternating if
for every two consecutive edges e and ej41, either ef € M, ei1 ¢ M or
e ¢ M, eiy1 € M holds.
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Figure: an M-alternating path and an M-augmenting path

® An M-augmenting path is an M-alternating path if the first and last
vertices are M-exposed.



Augmenting paths

® The key idea is that if there is an M-augmenting path, we can improve the
matching.
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Figure: improving the matching by an augmenting path

® On the augmenting path, we switch the role of the matching edges and
that of the edges not in the matching.



Augmenting paths

® Given a matching M and an M-augmenting path P, their symmetric
difference M & P is obtained from M after augmenting the edges of P.

Lemma

Let G = (V,E) be a graph, not necessarily bipartite. Let M be a matching,
and let P be an M-augmenting path. Then M & P is a matching of G with
IM @ P| = |M|+1.

Theorem

Let G = (V,E) be a graph, not necessarily bipartite, and let M be a matching.
Then M is a maximum matching if and only if there is no M-augmenting path
in G.



Augmenting path algorithm

Algorithm 1 Augmenting path algorithm for maximum bipartite matching

Initialize M = 0.

while there is an M-augmenting path do
Find an M-augmenting path P
Update Mas M= Mo P

end while

Return M

® As an augmenting path increases the matching size by 1, the algorithm
finds at most |V/|/2 augmenting paths.



Alternating tree procedure

® The algorithm builds a tree structure starting from an M-exposed vertex
as its root.
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® We call such a tree an M-alternating tree.




Alternating tree procedure

Theorem

Let G = (V, E) be a bipartite graph, and let M be a matching. If 77 does not
return an M-augmenting path, then G contains no M-augmenting path as a
subgraph.

Figure: the first M-alternating tree



Alternating tree procedure

Figure: a partition of V with M-alternating trees



Alternating tree procedure
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Figure: another illustration of the partition



Maximum weight matching

® Maximum matching seeks to maximize the number of edges in a
matching, in which individual edges are treated equally.

® Some edges can be more important than others, captured by edge
weights.

® With the edge weights, an alternate objective is to find a matching that
maximizes the total weight sum of its edges.

maximize g We
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® New objective:

the weight of edge e
® This is referred to as the maximum weight bipartite matching problem.

® One may extend the augmenting path algorithm to the weighted case, let
us discuss another method that has a slightly different flavor.



Formulating as an optimization problem

Variables

® For each edge e € E, use variable x. to indicate whether e is picked for
our matching M or not, i.e.,

{1 if e is included in matching M,
Xe =

0 otherwise.

® In this case, x € {0, 1}|E‘ is the incidence vector, or the characteristic
vector, of matching M given by

M={ec E:x.=1}

E We = E WeXe.

eeM ecE

® Then we have



Formulating as an optimization problem

Constraints
® However, not all x € {0,1}/5! corresponds to a matching.
® What we know is that a vertex u € V is incident to at most one edge of a

matching.
® We may impose the condition by setting
Z X <1 (degree)
veVuwveE

where the sum is taken over the neighbors of u.

Lemma

Let G = (V,E) be a graph, not necessarily bipartite, and let x € {0,1}
Then x satisfies (degree) for all u € V' if and only if x is the incidence vector of
some matching M of G.
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Formulating as an optimization problem

Optimization problem

® Then the following computes a maximum weight matching:

maximize E We Xe
ecE

subject to Z xw <1 forallueV, (IP)
veVuveE

xe €{0,1} foralle€E.

® This is to select a vector x that achieves the maximum value of >°_
among the vectors satisfying (degree) for all u € V and x € {0, 1}/E.

WeXe

® For (IP), constraint (degree) is referred to as the degree constraint.

® Constraint x € {0,1}/fl is called the binary constraint.



Formulating as an optimization problem

maximize E WeXe
ecE

subject to Z xw <1 forallueV, (IP)
veV:uveE

xe € {0,1} foralle€ E.

Proposition

Let G = (V, E) be a graph, not necessarily bipartite, and let w € R/El. Then
solving the optimization problem (IP) computes a maximum weight matching
in G.



Formulating as an optimization problem

maximize E WeXe
ecE

subject to Z xw <1 forallueV, (IP)
veVuwveE
xe € {0,1} forall e € E.

Xuv

® In (IP), both the objective )
are linear functions in x.

weXe and the constraint Y

ecE veViuwveE

® Here, a linear function in x is a function of the form

T E
c x= E Cexe for some ¢ € RIEI
eeE

® An optimization problem whose objective and constraints are given by
linear functions is called a linear program.

® However, the binary constraint in (IP) generates discontinuity and thus
cannot be represented by a linear function



Formulating as an optimization problem

maximize E WeXe
ecE

subject to Z xw <1 forallueV, (IP)
veVuveE

xe € {0,1} foralle € E.

® However, the binary constraint in (IP) generates discontinuity and thus
cannot be represented by a linear function.

® When the objective and constraints except for the binary constraint on its
variables are given by linear functions, it is called a binary linear program.

® In general, a binary linear program is an integer linear program which in
general can take any integer-valued variables.

® |t is known that integer linear programming and binary linear programming
are NP-hard.

® linear programming admits a polynomial time algorithm such as the
ellipsoid method and the interior-point algorithm.



LP relaxation

® A common approach to tackle an integer linear program is to obtain its
linear programming (LP) relaxation.

® The LP relaxation relaxes and removes the constraints to impose that
the variables have integer values, and it becomes a linear program.

® The LP relaxation of (IP) is given by

maximize E We Xe
ecE

subject to Z xw <1 forallueV, (LP)
veVuveE
Xe >0 forallec E

® Any x satisfying the constraints of (LP) would have x. <1 for all e € E,
because x. appears in (degree).



LP relaxation

Lemma

Let G = (V, E) be a graph, not necessarily bipartite, and let w € RIEl. Then
the optimal value of the LP relaxation (LP) is greater than or equal to the
optimal value of (IP).

maximize E WeXe
ecE

subject to Z xw <1 forallueV, (LP)
veVuveE
Xe >0 forallee E

® The linear program (LP) provides an upper bound on the maximum size of
a matching in any graph that is not necessarily bipartite.

® However, an optimal solution x* to (LP) can have fractional parts in (0, 1)
in which case x* does not correspond to a matching.

® Nevertheless, we can prove that bipartite graphs do not have such an
issue.



Exactness of the LP relaxation for bipartite graphs

Theorem

Let G = (V,E) be a bipartite graph, and let w € RIEl. Then the LP
relaxation (LP) has an optimal solution x* that satisfies x; € {0,1} for all

e € E. Moreover, one can find a maximum matching in G by solving the linear
program (LP).

® Let x € [0,1]'¥! be an optimal solution to (LP).
® Consider S = {e € E : X. > 0} and the subgraph H of G obtained by
deleting the edges that are not in S.

® S may have cycles and large trees.

® \We break the cycles and trees to obtain a matching.



Exactness of the LP relaxation for bipartite graphs

Breaking cycles




Exactness of the LP relaxation for bipartite graphs

Breaking cycles




Exactness of the LP relaxation for bipartite graphs

Breaking trees
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Exactness of the LP relaxation for bipartite graphs

Breaking trees
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LP-based algorithm for maximum weight bipartite matching

Algorithm 1 LP-based algorithm for maximum weight bipartite matching

Solve the linear program (LP) and get an optimal solution X
Take S = {e € E : X. > 0} and the corresponding subgraph H
while H contains a cycle do
Find a cycle C in H
Break C by updating X and S
end while
while H contains a tree with at least three vertices do
Take a connected component T of H
Break T by updating X and S
end while
Return S

® In practice, we may use the simplex method for solving the LP
relaxation (LP).

® For (LP), we can in fact argue that the simplex method directly finds an
optimal solution X with X. € {0,1} for all e € E.



Perfect matching

® Given a graph G = (V, E), not necessarily bipartite, a matching M in G is
perfect if every vertex v € V is incident to an edge in M.

® In other words, every vertex is attached to a matching edge in a perfect
matching.
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Maximum weight perfect matching

® \We can compute a perfect matching by solving an optimization problem
described as follows.

® As in the previous section, we use x. to indicate whether e is picked for
our matching M or not.

® To guarantee that M is a perfect matching, we impose the constraint

Z x, =1

veVwveE

for any vertex u € V.

® QOptimization problem:

maximize E WeXe
ecE

subject to Z xow =1 forallueV, (Perfect)
veVuwveE
xe € {0,1} foralle€E.



Maximum weight perfect matching

® A matching always exists as the empty set is trivially a matching.

® However, aa perfect matching does not always exsits even for a bipartite
graph.

Figure: a bipartite graph that does not admit a perfect matching



Hall's marriage theorem

® This means that the integer linear program (Perfect) may not have a
feasible solution.

® For bipartite graphs, we have a simple structural characterization for the
existence of a perfect matching.

® The characterization is referred to as Hall’s marriage theorem.

® Given a subset S C V, N(S) denotes the set of vertices that are adjacent
to any vertex in S.

Theorem (Hall's marriage theorem)

Let G = (V,E) be a bipartite graph where V is partitioned into Vi and V5.
Then G has a perfect matching if and only if IN(S)| > |S| for any S C V4.



Hall's marriage theorem

Theorem (Hall's marriage theorem)

Let G = (V, E) be a bipartite graph where V is partitioned into Vi and V5.
Then G has a perfect matching if and only if IN(S)| > |S| for any S C V.



Hall's marriage theorem

Theorem (Hall's marriage theorem)

Let G = (V,E) be a bipartite graph where V is partitioned into Vi and V5.
Then G has a perfect matching if and only if |[N(S)| > |S| for any S C V4.
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Figure: the M-alternating tree from an M-exposed vertex




