
Introduction to Modern Combinatorial Optimization POSTECH, Winter 2025
Lecture #3: linear programming for bipartite matching January 14, 2025
Lecturer: Dabeen Lee

Outline

In this lecture, we consider the weighted version of the bipartite matching problem, for which we
explain the linear programming-based approach.

1 Linear programming formulation for bipartite matching

In Lecture 2, we learned the augmenting path algorithm for computing a maximum matching in a
bipartite graph. Here, the objective is to maximize the number of edges in a matching, for which
we treat all edges equally. In some applications, however, there can be disparities between the
importance of edges. We can model such scenarios by setting some arbitrary weights on the edges.
To elaborate, for a graph G = (V,E), let us assume that each edge e ∈ E has a weight we ∈ R.
With the edge weights, an alternate objective is to find a matching M that maximizes the total
weight sum of its edges, given by

w(M) =
∑
e∈M

we.

This problem is referred to as the maximum weight bipartite matching problem. Although
one may extend the augmenting path algorithm to the weighted case, let us discuss another method
that has a slightly different flavor.

The method we cover in this section is based on linear programming. The idea is as follows. For
each edge e ∈ E, let us introduce a variable xe to indicate whether e is picked for our matching
M or not, i.e.,

xe =

{
1 if e is included in matching M ,

0 otherwise.

In this case, x ∈ {0, 1}|E| is the incidence vector, or the characteristic vector, of matching M
given by

M = {e ∈ E : xe = 1}.

Then we have ∑
e∈M

we =
∑
e∈E

wexe.

where w ∈ R|E| consists of the edge weights. Note, however, that any subset S ⊆ E, not necessarily
a matching, can have its incidence vector in {0, 1}|E|. Hence, the next question is about how to
guarantee that x corresponds to some matching. What we know is that a vertex u is incident to at
most one edge of a matching. We may impose the condition by setting∑

v∈V :uv∈E
xuv ≤ 1 (3.1)

where the sum is taken over the neighbors of u.

Lemma 3.1. Let G = (V,E) be a graph, not necessarily bipartite, and let x ∈ {0, 1}|E|. Then x
satisfies (3.1) for all u ∈ V if and only if x is the incidence vector of some matching M of G.

1



Proof. Let M be given by M = {e ∈ E : xe = 1}. Note that M is a matching if and only if each
vertex u is incident to at most one edge in M , which is equivalent to (3.1).

We consider the following optimization problem to compute a maximum weight matching:

maximize
∑
e∈E

wexe

subject to
∑

v∈V :uv∈E
xuv ≤ 1 for all u ∈ V ,

xe ∈ {0, 1} for all e ∈ E.

(3.2)

The meaning of this formulation is to select a vector x that achieves the maximum value of∑
e∈E wexe among the vectors satisfying (3.1) for all u ∈ V and x ∈ {0, 1}|E|. Here,

∑
e∈E wexe is

an objective, and the condition (3.1) and xe ∈ {0, 1} are called constraints. In general, an op-
timization problem has three components: variables, an objective, and constraints. The objective
and constraints are written with the variables, and the goal is to determine values for the variables
that satisfy the constraints and maximize (or minimize) the objective. For (3.2), constraint (3.1) is
referred to as the degree constraint and constraint x ∈ {0, 1}|E| is called the binary constraint.

Proposition 3.2. Let G = (V,E) be a graph, not necessarily bipartite, and let w ∈ R|E|. Then
solving the optimization problem (3.2) computes a maximum weight matching in G.

Proof. By Lemma 3.1, we can encode any matching by a vector x satisfying the degree and binary
constraints of (3.2). For such a vector x, the objective represents the weight of the corresponding
matching.

In (3.2), both the objective
∑

e∈E wexe and the constraint
∑

v∈V :uv∈E xuv are linear functions
in x. Here, a linear function in x is a function of the form

c>x =
∑
e∈E

cexe

for some c ∈ R|E|. An optimization problem whose objective and constraints are given by linear
functions is called a linear program. However, the binary constraint in (3.2) generates disconti-
nuity and thus cannot be represented by a linear function1. Nevertheless, an optimization problem
whose objective and constraints except for the binary constraint on its variables are given by linear
functions is called a binary linear program. In general, a binary linear program is an integer
linear program which in general can take any integer-valued variables. It is known that integer
linear programming and binary linear programming are NP-hard, while linear programming admits
a polynomial time algorithm such as the ellipsoid method and the interior-point algorithm.
Hence, a common approach to tackle an integer linear program is to obtain its linear program-
ming (LP) relaxation. The LP relaxation relaxes and removes the constraints to impose that
the variables have integer values, and as a result, it becomes a linear program.

The LP relaxation of (3.2) is given by

maximize
∑
e∈E

wexe

subject to
∑

v∈V :uv∈E
xuv ≤ 1 for all u ∈ V ,

xe ≥ 0 for all e ∈ E

(3.3)

1To be more precise, the set of vectors satisfying the binary constraint is not linearly representable.

2



where xe ≥ 0 replaces the binary constraint xe ∈ {0, 1}. (3.3) is indeed a linear program as its
constraints are represented by linear functions. Note that any x satisfying the constraints of (3.3)
would have xe ≤ 1 for all e ∈ E, because xe appears in the degree constraint of an endpoint of e.

Lemma 3.3. Let G = (V,E) be a graph, not necessarily bipartite, and let w ∈ R|E|. Then the
optimal value of the LP relaxation (3.3) is greater than or equal to the optimal value of (3.2).

Proof. As (3.3) is a relaxation of (3.2), any x satisfying the constraints of (3.2) also satisfies the
constraints of (3.3). Hence, (3.3) can achieve whatever value a solution to (3.2) can attain.

By Lemma 3.3, the linear program (3.3) provides an upper bound on the maximum size of a
matching in any graph that is not necessarily bipartite. However, the issue is that an optimal
solution x∗ to (3.3) can have fractional parts in (0, 1) in which case x∗ does not correspond to a
matching. Nevertheless, we can prove that bipartite graphs do not have such an issue.

Theorem 3.4. Let G = (V,E) be a bipartite graph, and let w ∈ R|E|. Then the LP relaxation (3.3)
has an optimal solution x∗ that satisfies x∗e ∈ {0, 1} for all e ∈ E. Moreover, one can find a
maximum matching in G by solving the linear program (3.3).

Proof. Let x̄ ∈ [0, 1]|E| be an optimal solution to (3.3). Consider S = {e ∈ E : x̄e > 0} and the
subgraph H of G obtained by deleting the edges that are not in S.

Breaking cycles Suppose that H contains a cycle C. Since H is bipartite, C is an even cycle.
Let e1, . . . , e2k for some k ≥ 1 be the edges of C where ei−1 and ei are consecutive for i = 1, . . . , 2k
and e0 = e2k. We take δ > 0 as

δ = min{x̄e : e ∈ {e1, . . . , e2k}}.

Take two consecutive edges ei−1 and ei for some i ∈ {1, . . . , 2k}. Then we have x̄ei−1 + x̄ei ≤ 1 as
ei−1 and ei share a common vertex. This means that x̄ei ≤ 1 − x̄ei−1 . Since x̄ei−1 ≥ δ, we have
x̄ei ≤ 1− δ for any i, and therefore,

max{x̄e : e ∈ {e1, . . . , e2k}} ≤ 1− δ.

Based on this, we construct two feasible solutions to (3.3) from x̄. First, x̃ is obtained by updating
the coordinates of x̄ corresponding to the edges of C as

x̃e1 = x̄e1 + δ, x̃e2 = x̄e2 − δ, . . . , x̃e2k−1
= x̄e2k−1

+ δ, x̃e2k = x̄e2k − δ.

The other coordinates of x̃ remain the same as x̄. Similarly, we obtain x̂ by setting

x̂e1 = x̄e1 − δ, x̂e2 = x̄e2 + δ, . . . , x̂e2k−1
= x̄e2k−1

− δ, x̂e2k = x̄e2k + δ.

Let us argue that both x̃ and x̂ satisfy the constraints of (3.3). Since x̄ei ∈ [δ, 1 − δ] for i =
1, . . . , 2k, we have x̃ei , x̂ei ∈ [0, 1] for i = 1, . . . , 2k. For any edge e not on the cycle C, we have
x̃e = x̂e = x̄e ∈ [0, 1]. Moreover, by our construction of alternatively adding and subtracting the
same value of δ on the cycle, we have∑

v:uv∈E
x̄uv =

∑
v:uv∈E

x̃uv =
∑

v:uv∈E
x̂uv

for any u ∈ V . As x̄ satisfies the degree constraint (3.1), so do x̃ and x̂. Then, since x̄ is an optimal
solution to (3.3), we have w>x̃ ≤ w>x̄ and w>x̂ ≤ w>x̄. On the other hand, by our choice of x̃ and
x̂, we have x̃+ x̂ = 2x̄, in which case w>x̃+ w>x̂ = 2w>x̄. This in turn implies that

w>x̃ = w>x̄ and w>x̂ = w>x̄.

3



Figure 3.1: breaking a cycle

Therefore, both x̃ and x̂ are optimal solutions to (3.3). Moreover, due to our construction, either
x̃ or x̂ has a value 0 for the position of an edge on C. Without loss of generality, we may assume
that x̃ has the property. Then we may replace x̄ by x̃ as S̃ = {e ∈ E : x̃e > 0} ⊆ S and the cycle
C no longer exists in S̃.

Breaking trees Breaking all cycles in the subgraph H, we may assume that H is a forest.
Suppose that a connected component of H is a tree T on at least three vertices. Then T has a pair
of two vertices u, v of degree one such that the uv-path on T has length at least two. Let the edges
of the uv-path be enumerated by e1, . . . , ek for some k ≥ 2. Take δ as

δ = min{x̄e : e ∈ {e1, . . . , ek}}.

As before, we can argue that

max{x̄e : e ∈ {e1, . . . , ek}} ≤ 1− δ.

Based on this, we take two feasible solutions x̃ and x̂ by setting

x̃e1 = x̄e1 + δ, x̃e2 = x̄e2 − δ, . . . ,

x̂e1 = x̄e1 − δ, x̂e2 = x̄e2 + δ, . . . ,

while the other coordinates remain the same as x̄. As before, we can argue that x̃e, x̂e ∈ [0, 1] for

Figure 3.2: breaking a tree

all e ∈ E. Moreover, for an internal vertex w of the uv-path, we have∑
w:ww′∈E

x̄ww′ =
∑

w:ww′∈E
x̃ww′ =

∑
w:ww′∈E

x̂ww′ .

For u, we have ∑
u:uw∈E

x̃uw = x̄e1 + δ ≤ 1,
∑

u:uw∈E
x̂uw = x̄e1 − δ ≤ 1.

4



Similarly, the degree constraint for v is also satisfied under x̃ and x̂. Then x̃ and x̂ satisfy the
constraints of (3.3). At the same time, we have x̃+ x̂ = 2x̄. As x̄ is an optimal solution, it follows
that x̃ and x̂ are also optimal to (3.3). Moreover, by our choice of δ, either x̃ or x̂ has a value 0
for the coordinate of an edge on the uv-path. Without loss of generality, we assume that x̃ has the
property. In this case, we can replace x̄ by x̃ as S̃ = {e ∈ E : x̃e > 0} ⊆ S and the tree T becomes
splitted into two smaller trees.

After breaking all cycles and all trees with at least three vertices, each connected component of
H has at most two vertices, which means that S is a matching. Suppose for a contradiction that
x̄e < 1 for some e ∈ S with we 6= 0. Then, for a sufficiently small δ > 0, we have x̄e− δ, x̄e + δ ≤ 1.
However, as we 6= 0, it follows that either we(x̄e − δ) or we(x̄e + δ) is strictly greater than wex̄e,
contradicting the optimality of x̄. Hence, for any e ∈ S with we 6= 0, we have x̄e = 1. For e ∈ S
with we = 0, we may update x̄ by setting x̄e = 1 without changing the objective value. After all,
we get that x̄ ∈ {0, 1}|E| and S is a maximum weight matching.

Consequently, the optimal value of (3.3) equals that of (3.2) when the graph G is bipartite. More-
over, the proof of Theorem 3.4 provides the following algorithm for computing a maximum weight
matching in a bipartite graph. Theorem 3.4 guarantees that Algorithm 1 returns a maximum

Algorithm 1 LP-based algorithm for maximum weight bipartite matching

Solve the linear program (3.3) and get an optimal solution x̄
Take S = {e ∈ E : x̄e > 0} and the corresponding subgraph H
while H contains a cycle do

Find a cycle C in H
Break C by updating x̄ and S

end while
while H contains a tree with at least three vertices do

Take a connected component T of H
Break T by updating x̄ and S

end while
Return S

weight matching in a bipartite graph.

In practice, we may use the simplex method for solving the LP relaxation (3.3). For (3.3), we
can in fact argue that the simplex method directly finds an optimal solution x̄ with x̄e ∈ {0, 1} for
all e ∈ E.

5


	Linear programming formulation for bipartite matching

