
Lecture 2: augmenting path algorithm

Dabeen Lee

Industrial and Systems Engineering, KAIST

2025 Winter Lecture Series on Combinatorial Optimization

January 13, 2025

1/20

Outline

• Augmenting path algorithm

• Alternating tree procedure

2/20

Goal of this lecture

• The greedy algorithm that finds a maximal matching in a bipartite graph
whose size is always at least half of the maximum size of a matching.

• Hence, the greedy algorithm is a constant approximation algorithm.

• In this section, we will introduce an algorithm that is guaranteed to
compute a maximum matching of a bipartite graph.

• The central idea of the algorithm lies in the concept of augmenting
paths, so the algorithm is referred to as the augmenting path algorithm.

3/20

Augmenting paths

• Let G = (V ,E) be a bipartite graph, and let M be a matching of G .

• We say that a vertex v ∈ V is M-exposed if v is not connected to an
edge in M.

• We say that a sequence of edges e1, . . . , ek is M-alternating if for every
two consecutive edges ei and ei+1, either ei ∈ M, ei+1 /∈ M or
ei /∈ M, ei+1 ∈ M holds.

Figure: an M-alternating path and an M-augmenting path

• An M-augmenting path is an M-alternating path if the first and last
vertices are M-exposed.

4/20

Augmenting paths

• The key idea is that if there is an M-augmenting path, we can improve the
matching.

Figure: improving the matching by an augmenting path

• On the augmenting path, we switch the role of the matching edges and
that of the edges not in the matching.

• In other words, we remove every edge e ∈ M from M and add every edge
e 6∈ M to M.

5/20

Augmenting paths

• To formalize the idea, we take an M-augmenting path P. We define the
symmetric difference of M and P, denoted M ⊕ P, as

M ⊕ P = (M \ P) ∪ (P \M).

• Hence, an edge e ∈ E belongs to M ⊕ P if and only if e is contained in
precisely one of M and P.

• Taking the symmetric difference of the matching M and an M-augmenting
path P, a change is made only on the edges of P.

• If P = e1, . . . , e2`−1 for some ` ≥ 1 with e1, e3 . . . , e2`−1 6∈ M and
e2, e4, . . . , e2`−2 ∈ M, we get e1, e3 . . . , e2`−1 ∈ M and
e2, e4, . . . , e2`−2 6∈ M after taking the synmetric difference.

• Then P becomes an alternating path with one more matching edge.

6/20

Augmenting paths

Lemma

Let G = (V ,E) be a graph, not necessarily bipartite. Let M be a matching,
and let P be an M-augmenting path. Then M ⊕ P is a matching of G with
|M ⊕ P| = |M|+ 1.

7/20

Augmenting path algorithm

• The lemma leads to a natural algorithm that iteratively improves the given
matching for a bipartite graph by finding an augmenting path.

Algorithm 1 Augmenting path algorithm for maximum bipartite matching

Initialize M = ∅.
while there is an M-augmenting path do

Find an M-augmenting path P
Update M as M = M ⊕ P

end while
Return M

8/20

Correctness

Theorem

Let G = (V ,E) be a graph, not necessarily bipartite, and let M be a matching.
Then M is a maximum matching if and only if there is no M-augmenting path
in G .

9/20

Correctness

10/20

Computational complexity

• In addition to its correctness, we also care about its computational
complexity, measuring the amount of computational costs to terminate.

• For the augmenting path algorithm, we will analyze its time complexity or
iteration complexity.

• Recall that each augmenting path increases the size of a matching by 1
while the maximum size of a matching is at most |V |/2.

• Therefore, the number times the while loop is incurred is at most |V |/2.

• Then, what remains is to analyze the computational complexity of finding
an M-augmenting path.

• We will show that an M-augmenting path can be found in O(|E |) time.

11/20

Trees

• We say that two distinct vertices u and v are connected if there is an
uv -path.
• We say that a graph is connected if any of its two distinct vertices are

connected.
• A connected graph is a tree if any two distinct vertices are connected by

exactly one path.

Figure: a tree and its hierarchical representation

• The terminology comes from the fact that a tree can be depicted in a
hierarchical fashion.
• First, we take any vertex v as a root and expand the tree with its

neighbors.
• We say that a vertex of degree 1 in a tree is a leaf vertex.
• Then we take all leaf vertices and add their neighbors to the tree on the

next level. 12/20

Forests

• The connected components of a graph are its maximal connected
subgraphs.

• A forest is a graph all of whose connected components are trees.

Exercise

A graph is a forest if and only if it has no cycle as a subgraph.

13/20

Alternating tree procedure

14/20

Alternating tree procedure

Algorithm 2 Alternating tree algorithm to find an M-augmenting path

Input: a bipartite graph G = (V ,E) and a matching M
while there is an M-exposed vertex in G do

Take an M-exposed vertex r and set it as the root.
Initialize T = {r} and L = {r}
while L 6= ∅ do

Take a vertex u ∈ L
if u has a neighbor that is M-exposed then

Return the path from the root to u on T .
else

for every neighbor v do
Take the vertex w such that vw ∈ M
Update T = T ∪ {v ,w} and L = (L \ {u}) ∪ {w}

end for
end if

end while
Delete all vertices in T from G

end while

15/20

Alternating tree procedure

• The algorithm builds a tree structure starting from an M-exposed vertex
as its root.

• We call such a tree an M-alternating tree.

16/20

Alternating tree procedure

Theorem

Let G = (V ,E) be a bipartite graph, and let M be a matching. If Algorithm 2
does not return an M-augmenting path, then G contains no M-augmenting
path as a subgraph.

Figure: the first M-alternating tree

17/20

Alternating tree procedure

Figure: a partition of V with M-alternating trees

18/20

Alternating tree procedure

Figure: another illustration of the partition

19/20

Computational complexity

• Note that an edge is enumerated when one of its endpoints is part of an
alternating tree.

• Hence, an edge is considered at most twice while running the alternating
tree procedure.

• Therefore, the number of iterations required is O(|E |).

• Recall that the number of while loops incurred for Algorithm 1 is O(|V |).

• As a result, the computational complexity of Algorithm 1 is O(|V ||E |).

20/20

