
Introduction to Modern Combinatorial Optimization POSTECH, Winter 2025
Lecture #2: augmenting path algorithm for bipartite matching January 13, 2025
Lecturer: Dabeen Lee

Outline

In this lecture, we learn the so-called augmenting path algorithm for computing a maximum match-
ing in a bipartite graph. The algorithm is based on the notion of augmenting paths, and we will
also cover how to find an augmenting path using the alternating tree procedure.

1 Augmenting path algorithm

Previously, we learned the greedy algorithm that finds a maximal matching in a bipartite graph
whose size is always at least half of the maximum size of a matching. In this section, we will
introduce an algorithm that is guaranteed to compute a maximum matching of a bipartite graph.
The central idea of the algorithm lies in the concept of augmenting paths, so the algorithm is
referred to as the augmenting path algorithm. Let us elaborate on them as follows.

Let G = (V,E) be a bipartite graph, and let M be a matching of G. We say that a vertex v ∈ V is
M-exposed if v is not connected to an edge in M . We say that a path with a sequence of edges
e1, . . . , ek is M-alternating if for every two consecutive edges ei and ei+1, either ei ∈M, ei+1 /∈M
or ei /∈ M, ei+1 ∈ M holds. An M-augmenting path is an M -alternating path if the first and
last vertices are M -exposed. Figure 2.1 shows an M -alternating path and an M -augmenting path
where the edges in M are colored red. By definition, the first and last edges of an M -augmenting

Figure 2.1: an M -alternating path and an M -augmenting path

path are not contained in M . Moreover, as an M -augmenting path is M -alternating, it has an odd
number of edges.

The key idea is that if there is an M -augmenting path, we can improve the matching. In Figure 2.2,
we have a bipartite graph and an M -augmenting path u1, v1, . . . , u4, v4. On the path, we switch the

Figure 2.2: improving the matching by an augmenting path

1

role of the matching edges and that of the edges not in the matching. In other words, we remove
every edge e ∈ M from M and add every edge e 6∈ M to M . By doing so, we obtain a larger
matching as shown in the second graph of Figure 2.2. To formalize it, we take an M -augmenting
path P . We define the symmetric difference of M and P , denoted M ⊕ P , as

M ⊕ P = (M \ P) ∪ (P \M).

Hence, an edge e ∈ E belongs to M ⊕ P if and only if e is contained in precisely one of M and
P . Taking the symmetric difference of the matching M and an M -augmenting path P , a change is
made only on the edges of P . To be more precise, if P is given by a sequence of edges e1, . . . , e2`−1
for some ` ≥ 1 with e1, e3 . . . , e2`−1 6∈M and e2, e4, . . . , e2`−2 ∈M , we get e1, e3 . . . , e2`−1 ∈M and
e2, e4, . . . , e2`−2 6∈ M after taking the synmetric difference. Then P becomes an alternating path
with one more matching edge. We refer to this procedure of taking the symmetric difference of M
and P as augmenting the edges of an M -augmenting path P . In Figure 2.3, the graph is obtained

Figure 2.3: an alternating path by an M -augmenting path

from augmenting the edges of the M -augmenting path given in Figure 2.1.

Lemma 2.1. Let G = (V,E) be a graph, not necessarily bipartite. Let M be a matching, and let
P be an M -augmenting path. Then M ⊕ P is a matching of G with |M ⊕ P | = |M |+ 1.

Proof. Let us first argue that M ⊕ P is a matching. Let e1, e2 be two distinct edges in M ⊕ P =
(M \ P) ∪ (P \M). If e1, e2 ∈ M \ P ⊆ M , then as M is a matching, e1 and e2 do not intersect.
If e1, e2 ∈ P \M , then as P is an M -alternating path, e1 and e2 are not consecutive on p and thus
do not intersect. Then we may focus on the case where one edge is part of M \ P and the other is
in P \M . Note that the edges in M \P do not touch the internal vertices of P as they are covered
by the edges in M ∩P . Furthermore, they do not touch the two end vertices of P because they are
M -exposed by definition. Therefore, any two distinct edges in M ⊕ P do not intersect, so it is a
matching.

For the second part, note that

|M ⊕ P | = |M \ P |+ |P | − |M ∩ P |.

If P has length 2` − 1 for some ` ≥ 1, then P has ` − 1 edges in M , so |M ∩ P | = ` − 1 and
|P | − |M ∩ P | = `. Therefore, it follows that

|M ⊕ P | = |M \ P |+ |M ∩ P |+ 1 = |M |+ 1,

as required.

Lemma 2.1 leads to a natural algorithm that iteratively improves the given matching for a bipartite
graph by finding an augmenting path. To be more precise, we consider the following algorithm.
Algorithm 1, called the augmenting path algorithm, is proven to find a maximum matching of a
bipartite graph.

2

Algorithm 1 Augmenting path algorithm for maximum bipartite matching

Initialize M = ∅.
while there is an M -augmenting path do

Find an M -augmenting path P
Update M as M = M ⊕ P

end while
Return M

Theorem 2.2. Let G = (V,E) be a graph, not necessarily bipartite, and let M be a matching.
Then M is a maximum matching if and only if there is no M -augmenting path in G.

Proof. If G has an M -augmenting path, then by Lemma 2.1, M ⊕ P is a matching that contains
one more edge than M , which means that M is not a maximum matching.

For the converse direction, let us assume that M is not a maximum matching. Let M∗ be a
maximum matching of G. Then we consider the symmetric diffence of M and M∗ given by

M ⊕M∗ = (M \M∗) ∪ (M∗ \M).

Then consider the subgraph H of G on the vertex set V whose edge set is M ⊕M∗. Since M
and M∗ are matchings of G, a vertex is icident to at most one edge of M and at most one edge
of M∗, so every vertex of H has degree at most 2. This in turn implies that H is a union of
vertex-disjoint paths and cycles. Moreover, the paths and cycles have edges that alternate between
M and M∗. In other words, for any two consecutive edges e1, e2 on one of the paths and cycles,
it holds that e1 ∈ M, e2 ∈ M∗ or e1 ∈ M∗, e2 ∈ M . As a result, the number of edges in M and
the number of edges in M∗ equal in each cycle of H. At the same time, since M∗ contains more
edges than M , there is a path P that has more edges in M∗ than M . This means that P is an
(M \M∗)-augmenting path in H. Consider the two end points of P . They are covered by M∗. If
they were not M -exposed, P could be extended with an edge in M \M∗, contradicting our choice
of P . This implies that P is an M -augmenting path in G.

Theorem 2.2 establishes the correctness of Algorithm 1 that it computes a maximum matching of a
bipartite graph. In addition to its correctness, we also care about its computational complexity,
which essentially measures the amount of computational costs to terminate. For Algorithm 1, we
will analyze its time complexity or iteration complexity. Recall that each augmenting path
increases the size of a matching by 1 while the maximum size of a matching is at most |V |/2.
Therefore, the number times the while loop is incurred is at most |V |/2. Then, what remains is to
analyze the computational complexity of finding an M -augmenting path. In the next section, we
will show that an M -augmenting path can be found in O(|E|)1 time.

2 Alternating tree procedure

Before explaining the algorithm to find an M -augmenting path, let us establish the notion of trees
and forests. First, we say that two distinct vertices u and v are connected if there is an uv-path
and that a graph is connected if any of its two distinct vertices are connected. A connected graph
is a tree if any two distinct vertices are connected by exactly one path. The terminology comes
from the fact that a tree can be depicted in a hierarchical fashion. In Figure 2.4, we have a tree

1This is the big-O notation: O(|E|) means that for any graph with |E| edges, the algorithm terminates in C × |E|
iterations where C is a constant that does not depend on the input graph.

3

Figure 2.4: a tree and its hierarchical representation

and its hierarchical representation. The way it works is that we take any vertex v as a root and
expand the tree with its neighbors. We say that a vertex of degree 1 in a tree is a leaf vertex.
Then we take all leaf vertices and add their neighbors to the tree on the next level. The connected
components of a graph are its maximal connected subgraphs. A forest is a graph all of whose
connected components are trees.

Exercise 2.3. A graph is a forest if and only if it has no cycle as a subgraph.

We consider the procedure given by Algorithm 2. As illustrated in Figure 2.5, the algorithm

Algorithm 2 Alternating tree algorithm to find an M -augmenting path

Input: a bipartite graph G = (V,E) and a matching M
while there is an M -exposed vertex in G do

Take an M -exposed vertex r and set it as the root.
Initialize T = {r} and L = {r}
while L 6= ∅ do

Take a vertex u ∈ L
if u has a neighbor that is M -exposed then

Return the path from the root to the M -exposed neighbor of u on T .
else

for every neighbor v do
Take the vertex w such that vw ∈M
Update T = T ∪ {v, w} and L = (L \ {u}) ∪ {w}

end for
end if

end while
Delete all vertices in T from G

end while

builds a tree structure starting from an M -exposed vertex as its root. We call such a tree an
M-alternating tree. Let us go through the algorithm step by step. First at level 0, where the
root vertex r is located, we consider the neighbors of r. If r has an M -exposed neighbor w, then rw
is an M -augmenting path. Otherwise, all neighbors of r are covered by M , in which case for every
neighbor v of r, we take vw ∈ M and add it to the tree. After this update, v is on level 1 while
w is on level 2. Moreover, w is a leaf vertex. As done for the root vertex, we repeat the procedure
for every leaf vertex of the tree. Once the tree expansion is completed and no augmenting path is

4

Figure 2.5: an M -alternating tree

found, we delete the vertices in T by taking the subgraph induced by the vertices not in T . Then
we start a new search with another M -exposed vertex. If no augmenting path is found until we
delete all vertices in G, then we conclude that there is no M -augmenting path in G and that M is
a maximum matching.

Let us prove that Algorithm 2 correctly decides whether G contains an M -augmenting path as a
subgraph and that if one exists, Algorithm 2 finds an M -augmenting path.

Theorem 2.4. Let G = (V,E) be a bipartite graph, and let M be a matching. If Algorithm 2 does
not return an M -augmenting path, then G contains no M -augmenting path as a subgraph.

Proof. Let r1 denote the first M -exposed vertex chosen as a root vertex, and let T1 be the tree
expanded from r1 by Algorithm 2. We take W1 as the set of vertices on an even level, including
level 0 and take V1 as the set of vertices on an odd level. Note that the vertices in W1 \ {r1} and
the vertices in V1 are in one-to-one correspondence by the matching edges in T1. As a result, we

Figure 2.6: the first M -alternating tree

have |W1| = |V1|+ 1. Repeating this procedure, Algorithm 2 gives rise to a partition of the vertex
set V with k M -alternating trees for some k ≥ 1, as illustrated in Figure 2.7. For i ∈ {1, . . . , k},
let the root vertex of the ith alternating tree Ti be ri, and let Wi and Vi denote the set of vertices
on an even level and the set of vertices on an odd level, repsectively. Then we have

|Wi| = |Vi|+ 1

for all i ∈ {1, . . . , k}.
We argue that no two vertices in W1 are adjacent. Let u, v ∈ W1. Then there are an r1u-path
and an r1v-path that have an even length. If uv is an edge, together with the r1u-path and the

5

Figure 2.7: a partition of V with M -alternating trees

r1v-path, we have an odd closed walk. This implies that G has an odd cycle, contradicting that G
is bipartite.

Furthermore, let us observe that no vertex in W1 is adjacent to a vertex in

V \ (V1 ∪W1) = (V2 ∪W2) ∪ · · · ∪ (Vk ∪Wk).

This holds because if a vertex u ∈W1 were adjacent to some vertex v ∈ V \ (V1∪W1), Algorithm 2
would add it as a child of v to T1. Similarly, no vertex in W2 is adjacent to

V \ ((V1 ∪W1) ∪ (V2 ∪W2)) = (V3 ∪W3) ∪ · · · ∪ (Vk ∪Wk).

Repeating this argument, we observe that no two distinct vertices in W1 ∪ · · · ∪Wk are adjacent,
as depicted in Figure 2.8.

Figure 2.8: another illustration of the partition

Now we are ready to argue that M is a maximum matching. Let M ′ be another matching. Then
every edge touches a vertex in V1 ∪ · · · ∪ Vk. At the same time, a vertex in V1 ∪ · · · ∪ Vk is incident
to at most one edge in the matching M ′. This implies that

|M ′| ≤ |V1 ∪ · · · ∪ Vk| =
k∑

i=1

|Vi|

for any matching M ′. As M already has
∑k

i=1 |Vi| edges, M is a maximum matching. Then, by
Theorem 2.2, G has no M -augmenting path, as required.

Now that we know the correctness of Algorithm 2, what remains is to analyze its computational
complexity. Note that an edge is enumerated when one of its endpoints is part of an alternating

6

tree. Hence, an edge is considered at most twice while running Algorithm 2. Therefore, the number
of iterations required is O(|E|).
Recall that the number of while loops incurred for Algorithm 1 is O(|V |). As a result, the compu-
tational complexity of Algorithm 1 is O(|V ||E|).

7

	Augmenting path algorithm
	Alternating tree procedure

