
Introduction to Modern Combinatorial Optimization POSTECH, Winter 2025
Lecture #1: introduction to bipartite matching January 13, 2025
Lecturer: Dabeen Lee

Outline

In Lecture 1, we first learn the basics of graph theory that consistutes the fundamental ground of
combinatorial optimization. Then we get to introduce one of our main topics for this course, the
bipartite matching problem. We also analyze the greedy algorithm that finds a maximal matching.

1 Graph theory basics

Königsberg is the historic German and Prussian name of the medieval city that is now Kaliningrad,
Russia. Figure 1.1 shows a 18th-century map of the city, highlighting two islands in the middle
surrounded by the river and the seven bridges. Their citizens were interested in the following

Figure 1.1: the medieval city of Königsberg, Prussia and the seven bridge problem

question, that is now known as the famous Königsberg bridge problem. Starting from a certain
region, is it possible to traverse all bridges exactly once and come back to the initial location? To
answer this question, one can abstract out the map, focusing on the connections between the four
different regions by the seven bridges. The second part of Figure 1.1 colors the four regions green,
yellow, purple, and orange, respectively. For simplicity, we refer to them as g, y, p, and o. We
enumerate the seven bridges as b1, . . . , b7. Here, bridges b1 and b2 connect g and y. Other bridges
connect two different regions, crossing the river. We can represent this information as in the third
part of Figure 1.1. Once we have simplified the picture, it becomes easier to argue that the answer
to the question is no. The argument is as follows. When we leave a region and come back to it
later, we take two bridges attached to the region. Hence, returning to the initial location would
take an even number of bridges connected to it. However, as shown in Figure 1.1, each region is
attached to an odd number of bridges.

Elements of graphs The third picture of Figure 1.1 is referred to as a graph. A graph G
consists of its vertex set V and an edge set E. For example, a vertex is used to represent a
region in a map as in Figure 1.1 while an edge connects two vertices like a bridge. That said, the
Königsberg map can be represented by a graph G whose vertex set is given by V = {g, y, p, o} with
the edge set E = {b1, . . . , b7}. Given two vertices u, v ∈ V , an edge connecting u and v can be
expressed as the set notation {u, v} or simply as uv. Here, we say that two vertices u and v are
adjacent if there is an edge uv ∈ E between them. Moreover, we call any vertex adjacent to u a
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neighbor of u. Next, given an edge e = {u, v}, we call u and v the endpoints of e. We say that
a vertex u is incident to an edge e if u is one of the endpoints of e. Lastly, the degree of a vertex
is the number of its neighbors which equals the number of incident edges to it.

Complete and bipartite graphs Let us consider several examples of graphs. We have four

Figure 1.2: examples of graphs

graphs in Figure 1.2. The first one has the vertex set V = {u, v, w} and the edge set {uv, vw,wu}.
The second one has the vertex set {x, y, z, w} and the edge set {xy, xw, xz, yz, yw, zw}. In fact,
the third graph is isomorphic to the second one. Note that the first graph has an edge between
every pair of two vertices, which is also the case for the second example. Such a graph is called
a complete graph. A complete graph on n vertices is denoted by Kn. In a complete graph, any
two distinct vertices are adjacent, and Kn has

(
n
2

)
edges. The fourth example has the same vertex

set as the second and third ones while the edge set is given by {xy, xw, yz, zw}. There is no edge
between x and z and no edge between y and w. This graph is a bipartite graph. In general, a
graph is bipartite if its vertex set V can be partitioned into two disjoint sets V1, V2 and no two
vertices inside each of V1 and V2 are not adjacent.In the fourth example of Figure 1.2, the vertex
set is partitioned into {x, z} and {y, w}. A complete bipartite graph is a bipartite graph with
the vertex set partition V = V1 ∪ V2 such that there is an edge between any u ∈ V1 and v ∈ V2.
We use notation Km,n for a complete bipartite graph where one vertex subset has m vertices and
the other has n vertices. The fourth example in Figure 1.2 is indeed a complete bipartite graph
K2,2. Figure 1.3 shows bipartite graphs whose vertex set can be partitioned into two subsets of

Figure 1.3: a bipartite graph(left) and a complete bipartite graph(right)

three vertices. The second graph of Figure 1.3 is K3,3.

Paths and cycles A walk is a sequence of vertices v0, v1, . . . , vk where any two consecutive
vertices are adjacent, i.e., vi−1vi ∈ E for any i ∈ {1, . . . , k}. An uv-walk is a walk whose initial
vertex is u and the final vertex is v. A path is a walk where no vertex is visited more than once.
An uv-path is a path that starts with u and ends with v. Figure 1.4 shows a walk and a path. A
closed walk is a walk v0, v1, . . . , vk that ends with the initial vertex, i.e., v0 = vk. A cycle is a
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Figure 1.4: a walk(left) and a path(right)

closed walk v0, . . . , vk that repeats no vertex except for v0 = vk. Figure 1.5 shows a closed walk
and a cycle. The length of a walk is the number of edges that it takes. A shortest path between

Figure 1.5: a closed walk(left) and a cycle(right)

two vertices u and v is an uv-path with the minimum length. A cycle of an odd length is referred
to as an odd cycle, and a cycle of an even length is called an even cycle.

Subgraphs and cliques Given a graph G = (V,E), a subgraph of G is given by G′ = (V ′, E′)
such that V ′ ⊆ V , E′ ⊆ E, and E′ is defined over V ′, which means that the endpoints of the edges
in E′ are fully contained in V ′. An induced subgraph H of G is a subgraph of G defined with
a vertex subset U ⊆ V so that uv is an edge in H if and only if u, v ∈ U and uv ∈ E. Here, we
say that H is a subgraph induced by U . In Figure 1.6, the graph in the middle is a subgraph
of the first graph. However, it is not an induced subgraph as the edge v2v4 is missing. The third

Figure 1.6: a graph, a subgraph, and an induced subgraph

graph is indeed an induced subgraph, which is given by the vertex subset {v2, v4, v5, v6}. A clique
is a subgraph that is a complete graph. In Figure 1.6, the subgraph induced by the vertex subset
{v4, v5, v6} is K3, so it is a clique.

Based on the concepts that we have learned so far, let us establish another equivalent characteri-
zation of bipartite graphs. First, the following statement will be useful.

Lemma 1.1. A closed walk of an odd length contains an odd cycle as a subgraph.
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We leave the lemma as an exercise. With this, we are ready to prove the following characterization
of bipartite graphs.

Proposition 1.2. A graph is bipartite if and only if it has no odd cycle as a subgraph.

Proof. Let us first argue that a biparite graph G contains no odd cycle. Suppose for a contradiction
that G has an odd cycle C, given by v0, v1, . . . , vk with v0 = vk where k is odd. Let the vertex
set of G be partitioned into V1 and V2. By definition, any two consecutive vertices in C belong
to distinct subsets. Without loss of generality, assume that v0 ∈ V2. As v0v1 is an edge, v1 ∈ V1.
Repeating the same argument for the other edges of C, as vk−1vk is an edge and k is odd, vk ∈ V1.
This contradicts the assumption that v0 = vk.

Next we show that if a graph G has no odd cycle, then it is bipartite. Take a vertex u of G. Then
define V1 as the set of vertices, to which a shortest path from u has an even length. Similarly, let
V2 be defined as the set of vertices, to which a shortest path from u has an odd length. As 0 is
even, u itself belongs to V1. By definition, V1 and V2 provide a proper partition of the vertex set.
Suppose for a contradiction that there exist two distinct vertices v and w that are adjacent and
belong to the same side of the partition. Hence, vw is an edge, and v, w ∈ V1 or v, w ∈ V2. Then
let us construct a closed walk as follows. We first take a shortest path from u to v. Then we move
from v to w by the edge vw. Lastly, we take a shortest path from w to u. Since v and w belong to
the same side of the partition, the uv-shortest path and the wu-shortest path have the same parity.
This means that the closed walk has an odd length. Then, by Lemma 1.1, the closed walk contains
an odd cycle, contradicting the assumption that G has no odd cycle.

2 Bipartite matching problem

Recall that a bipartite graph is a graph G = (V,E) where

• the vertex set V is partitioned into two sets V1 and V2,

• each edge e ∈ E crosses the partition, i.e. e has one end in V1 and the other end in V2.

For example, Figure 1.7 shows a bipartite graph on four vertices where the vertex set is partitioned
into two sets of two vertices. A matching is a set of edges without common vertices. In Figure 1.7,

Figure 1.7: a bipartite graph and its matchings

the second and third figures provide matchings of the bipartite graph. A maximal matching is a
matching that cannot be extended to a matching of a larger cardinality. In other word, a maximal
matching is not properly contained in another matching. Note that the second figure of Figure 1.7
is a maximal matching. A maximum matching is a matching with the maximum number of
edges. The third figure of Figure 1.7 is a maximum matching. Hence, a maximum matching is a
maximal matching, while the converse is not true.
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The maximum bipartite matching problem is to find a matching that has the maximum num-
ber of edges. The maximum bipartite matching problem can model a wide range of applications
in practice. As the name suggests, it provides a natural framework for couple matching scenarios.
Similarly, US medical students are matched with residency programs using the National Resident

Figure 1.8: couple matching and doctor-hospital assignment applications

Matching Program (NRMP) based on bipartite matching, as described in Figure 1.8. Online adver-
tisement slot allocation is another exemplary application of bipartite matching. Online platforms
run auctions to sell their advertisement slots to advertisers, as shown in Figure 1.9. There are many

Figure 1.9: online advertisement slot allocation

other applications, and we list a few below.

• Recommender systems: A bipartite graph can represent user-item preference information.

• Economic matching markets: Bipartite networks can model how markets work between two
disjoint parties of players, such as buyers and sellers. Online ad allocation is an example.

• Job-server scheduling: In a large data center, jobs to be processed arrive in real time, and
the scheduler assigns them to multiple servers and processors based on their computing re-
quirements.
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3 Greedy algorithm for maximum bipartite matching

Now that we have introduced bipartite matching, our next question is about how to compute a
maximum matching in a bipartite graph. One natural approach is to greedily select and add edges
without destroying the matching structure. The greedy algorithm works as follows.

Algorithm 1 Greedy algorithm for bipartite matching

Enumerate the edges in E as e1, . . . , e|M |
Initialize M = ∅.
for i = 1, . . . , |E| do

If M ∪ {ei} is a matching, then update M as M = M ∪ {ei}.
end for
Return M

Does the greedy algorithm given in Algorithm 1 find a maximum matching for a bipartite graph?
Unfortunately, that is not always the case. In Figure 1.7, we have a bipartite graph with V =
{x, y, z, w} and E = {xy, xw.yz}. If the greedy algorithm processes the sequence xy, xw, yz, then
it would return M = {xy}, whereas the maximum matching is given by {xw, yz}.
Nevertheless, can we understand how small a matching returned by the greedy algorithm is com-
pared to the size of a maximum matching? The following result shows that the greedy algorithm
can achieve at least 50% of the maximum size.

Theorem 1.3. Let G = (V,E) be a bipartite graph, and let M be a maximal matching. Then

|M | ≥ 1

2
OPT

where OPT denotes the maximum size of a matching in G.

Proof. We prove that for any matching M ′ in G, 2|M | ≥ |M ′|. Suppose for a contradiction that
2|M | < |M ′| for some matching M ′. Let e = {u, v} be an edge contained in M . Note that M ′

contains at most two edges that intersect with e. Since 2|M | < |M ′|, M ′ has an edge e′ that
intersects with none of the edges of M . This implies that M ∪ {e′} is a matching, contradicting
the maximality of M .

Since Algorithm 1 always finds a maximal matching, it follows that the number of edges in the
matching M found by Algorithm 1 is at least half of the maximum size of a matching in a bipartite
graph G. Therefore, the greedy algorithm is a (1/2)-approximation algorithm for maximum
bipartite matching.

6


	Graph theory basics
	Bipartite matching problem
	Greedy algorithm for maximum bipartite matching

