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Reinforcement Learning for LLM
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Reinforcement Learning for AlphaGo
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Function Approximation for Reinforcement Learning

• Model the reward function, the transition kernel, or the value function
with a function class, e.g., neural networks.

• Applications (of mostly neural function approximation):
• Atari games [Mnih et al., 2015]
• Go [Silver et al., 2017]
• Robotics [Kober et al., 2013]
• Autonomous driving [Yurtsever et al., 2020].

• Despite this empirical success, we lack theoretical understanding of
function approximation frameworks.

Today’s Theme

Design and analyze function approximation frameworks and algorithms for
reinforcement learning with provable guarantees.
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Outline

• Markov Decision Process (MDP) (Background)

• Linear Function Approximation for Reinforcement Learning (RL)

• Multinomial Logistic (MNL) Function Approximation for RL
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Markov Decision Process (MDP)

Formulation

• π(a | s): policy, given by the probability of taking action a at state s

• r(s, a): reward from choosing action a at state s

• P(s ′ | s, a): probability of transitioning to state s ′ from state s when the
chosen action is a.
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Markov Decision Process (MDP)

Settings

• Finite-Horizon MDP

• Infinite-Horizon Average-Reward MDP

• Infinite-Horizon Discounted-Reward MDP
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Markov Decision Process (MDP)

Finite-Horizon MDP

• Fixed initial state (or a fixed distribution of the initial state).

• H: the finite length of the horizon.

• For example, arcade games.

• Basically, run an episode and reset.
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Markov Decision Process (MDP)

Infinite-Horizon Average-Reward MDP

• Continue the process without resetting.

• Start with the initial state s1.

• Given state st in time t, take action at and observe the next state st+1.

• For example, inventory management and financial planning.

• Average reward (under policy π):

Jπ(s1) = lim inf
T→∞

E

[
1

T

T∑
t=1

r(st , at)

]
.

• Optimal policy:
π∗ ∈ argmaxπ {J

π(s1)} .
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Markov Decision Process (MDP)

Infinite-Horizon Discounted-Reward MDP

• Similar to the infinite-horizon average-reward setting.

• Discounted reward (under policy π):

V π(s1) = lim inf
T→∞

E

[
T∑
t=1

γt−1r(st , at)

]

for some discount factor γ ∈ (0, 1).
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Computing Optimal Policies for MDPs

• If the reward and transition functions are known, we can efficiently
compute an optimal policy for both finite- and infinite- horizon MDPs.

• One may use the following frameworks to compute an optimal policy.
1 Linear programming-based methods.
2 Value iteration.
3 Policy iteration.
4 Policy gradient.
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Reinforcement Learning for MDPs

Reinforcement Learning for Infinite-Horizon Average-Reward MDP

• At state st for time step t, take action at from policy πt

• Observe r(st , at) + εt (noisy reward) and the next state st+1.

• Learn the reward function r and the transition function P.

• Update πt to obtain policy πt+1 for time step t + 1.

• Total cumulative reward over T steps:

T∑
t=1

r (st , at) .

• Regret:

T ·max
π

{
lim inf
T→∞

1

T
· E

[
T∑
t=1

r (sπt , a
π
t )

]}
︸ ︷︷ ︸

optimal average reward

−
T∑
t=1

r (st , at)
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Regret Bounds

Infinite-Horizon Average-Reward MDP

• Not all MDPs are learnable!

• Not learnable means that no algorithm can guarantee a sublinear regret.

Regret(T )

= T ·max
π

{
lim inf
T→∞

1

T
· E

[
T∑
t=1

r (sπt , a
π
t )

]}
−

T∑
t=1

r (st , at) = o(T )︸ ︷︷ ︸
sublinear in T

(sublinear in T : Regret(T )/T → 0 as T →∞).
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Regret Bounds

Infinite-Horizon Average-Reward MDP

• Recovery from a bad state to a good state should be possible!

• Ergodic MDP: every policy induces a single recurrent class.

• Communicating MDP: one can travel from one state to any other state by
a policy.

• Weakly Communicating MDP: state space S has a set of communicating
states, and the others are transient states.
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Regret Bounds

Infinite-Horizon Average-Reward Tabular MDP

• Communicating MDP: MDPs with bounded diameter, where

D︸︷︷︸
diameter of an MDP M

= max
s 6=s′∈S

min
π:S→A

E

 T (s ′ | M, π, s)︸ ︷︷ ︸
travel time from s to s′

 .
• Weakly Communicating MDP: MDPs with bounded span, where

sp(v∗) = max
s∈S

v∗(s)−min
s∈S

v∗(s)

and v∗ is the optimal associated bias function.

• For communicating MDPs, sp(v∗) ≤ D.
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Regret Bounds

• Regret (S : # of states, A: # of actions):

Regret Lower Bound [Jaksch et al., 2010] Ω(
√

sp(v∗)SAT )

UCRL2 [Jaksch et al., 2010] Õ(DS
√
AT )

Thompson Sampling [Agrawal and Jia, 2017] Õ(D
√
SAT )

REGAL.D [Bartlett and Tewari, 2009] Õ(sp(v∗)S
√
AT )

EBF [Zhang and Ji, 2019] Õ(
√

sp(v∗)SAT )

General Goal

1. Prove a strong lower bound
2. Develop an algorithm whose regret upper bound is close to the lower bound.
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RL with Function Approximation

• For infinite-horizon average-reward MDPs, the regret lower bound is

Infinite-horizon [Jaksch et al., 2010] Ω(
√

sp(v∗)SAT )

• When S or A is large, the regret is large.

• Atari: 10100 states, Go: 10170 states.
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RL with Function Approximation

• There can be some underlying structures for a given MDP.

• Hence, we may approximate the reward function or the transition kernel
by a function class, e.g., neural networks.

• Applications (of mostly neural function approximation):
• Atari games [Mnih et al., 2015]
• Go [Silver et al., 2017]
• Robotics [Kober et al., 2013]
• Autonomous driving [Yurtsever et al., 2020].

Question

Assuming that the reward and transition functions come from a function class,
can we guarantee a smaller regret bound?
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Linear Function Approximation

Linear MDP

• Assume that the transition probability is given by

P(s ′ | s, a) = ϕ(s, a)>µ(s ′).

• ϕ : S ×A → Rd is a known feature mapping.

• µ : S → Rd is an unknown parameter function.

• We are interested in the regime where the dimension d is small.

• The task is to learn the unknown parameter function µ.
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Linear Function Approximation

Linear Mixture MDP

• Assume that the transition probability is given by

P(s ′ | s, a) = ϕ(s, a, s ′)>θ.

• ϕ : S ×A× S → Rd is a known feature mapping.

• θ ∈ Rd is an unknown parameter.

• We are interested in the regime where the dimension d is small.

• The task is to learn the unknown parameter θ.
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Linear Function Approximation

Regret for Infinite-Horizon Linear MDP

Lower Bound [Wu et al., 2022] Ω(d
√

sp(v∗)T )

FOPO [Wei et al., 2021] (inefficient) Õ(d1.5sp(v∗)
√
T )

OLSVI.FH [Wei et al., 2021] Õ(d0.75sp(v∗)0.5T 0.75)

LOOP [He et al., 2024] (inefficient) Õ(d1.5sp(v∗)1.5
√
T )

MDP-EXP2 [Wei et al., 2021] (ergodic) Õ(dτ 1.5
mix

√
T )

Theorem (Hong, Chae, Zhang, Lee, and Tewari, 2024+)

An efficient value iteration-based algorithm guarantees that for weakly
communicating linear MDPs with span sp(v∗),

Regret = Õ
(
d1.5sp(v∗)

√
T
)
.

• We achieve the best regret upper bound with an efficient algorithm.
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Linear Function Approximation

Corollary (Hong, Chae, Zhang, Lee, and Tewari, 2024+)

There is an efficient model-free algorithm that guarantees that

Regret = Õ
(
sp(v∗)S1.5A1.5

√
T
)

for weakly communicating MDPs with span sp(v∗) where S and A are the
numbers of states and actions.

• This improves upon the regret upper bound of

Regret = Õ
(
sp(v∗)S5A2

√
T
)

due to [Zhang and Xie, 2023].
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Linear Function Approximation

Regret for Infinite-Horizon Linear Mixture MDP

Lower Bound [Wu et al., 2022] Ω(d
√

sp(v∗)T )

UCRL2-VTR [Wu et al., 2022] (communicating) Õ(d
√
DT )

Theorem (Chae, Hong, Zhang, Tewari and Lee, 2024+)

An efficient value iteration-based algorithm guarantees that for weakly
communicating linear mixture MDPs with span sp(v∗),

Regret = Õ
(
d
√

sp(v∗)T
)
.

• Our algorithm is minimax optimal!
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Algorithm for Linear MDPs and Analysis

Parameter Estimation

1 There exists θ∗ ∈ Rd such that

Es′∼P(·|s,a)

[
V (s ′)

]
= ϕ(s, a)>θ∗

for any value function V and state-action pair (s, a).

2 To obtain θ, we apply ridge regression:

θ̂ = argminθ∈Rd λ‖θ‖2
2 +

∑
τ

ϕ(sτ , aτ )>θ︸ ︷︷ ︸
expected value

− V (sτ+1)︸ ︷︷ ︸
realized value


2

.
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Algorithm for Linear MDPs and Analysis

Value Iteration with Clipping

1 Approximate the average-reward MDP by a discounted-reward MDP.

2 Run value iteration on the disounted-reward MDP:

Qn+1(s, a) =

r(s, a) + γ · ϕ(s, a)>θ̄n︸ ︷︷ ︸
discounted value iteration

+ β ‖ϕ(s, a)‖Σ−1︸ ︷︷ ︸
bonus term for optimism


[0,(1−γ)−1]

.

3 Apply the following clipping operation to control span:

Vn+1(s) = min

max
a

Qn+1(s, a), min
s′

max
a

Qn+1(s ′, a) + 2 · sp(v∗)︸ ︷︷ ︸
threshold

 .
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Algorithm for Linear MDPs and Analysis
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Algorithm for Linear MDPs and Analysis

Proof for Regret Upper Bound

• The regret function can be decomposed as follows.

Lemma

Regret

≤
K∑

k=1

tk+1−1∑
t=tk

(J∗ − (1− γ)V k
t+1(st+1))

︸ ︷︷ ︸
(a)

+γ
K∑

k=1

tk+1−1∑
t=tk

(V k
t+1(st+1)− Qk

t (st , at))

︸ ︷︷ ︸
(b)

+ γ

K∑
k=1

tk+1−1∑
t=tk

(
Es′∼P(·|st ,at )

[
V k

t+1(s ′)
]
− V k

t+1(st+1)
)

︸ ︷︷ ︸
(c)

+ 4β
K∑

k=1

tk+1−1∑
t=tk

‖ϕ(st , at)‖Λ−1
t︸ ︷︷ ︸

(d)
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Algorithm for Linear MDPs and Analysis

Proof for Regret Upper Bound

• Term (a), given by

K∑
k=1

tk+1−1∑
t=tk

(J∗ − (1− γ)V k
t+1(st+1)),

is due to approximation by the discounted-reward MDP.

Lemma

Let J∗ and v∗ be the optimal average reward and the optimal bias function,
and let V ∗ be the optimal discounted value function with discount factor
γ ∈ [0, 1). Then it holds that

max
s∈S
|J∗ − (1− γ)V ∗(s)| ≤ (1− γ)sp(v∗),

sp(V ∗) ≤ 2 · sp(v∗).

29/40



Algorithm for Linear MDPs and Analysis

Proof for Regret Upper Bound

• Term (b), given by

K∑
k=1

tk+1−1∑
t=tk

(V k
t+1(st+1)− Qk

t (st , at)),

can be upper bounded based on

V k
t+1(st+1) ≤ max

a
Qk

t+1(st+1, a) = Qk
t+1(st+1, at+1).

• This leads to a telescoping sum.
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Algorithm for Linear MDPs and Analysis

Proof for Regret Upper Bound

• Term (c), given by

K∑
k=1

tk+1−1∑
t=tk

(
Es′∼P(·|st ,at )

[
V k

t+1(s ′)
]
− V k

t+1(st+1)
)
,

is bounded based on the covering argument due to [Jin et al., 2020] along
with the Azuma-Hoeffding inequality for martingales.

• Term (d), given by
K∑

k=1

tk+1−1∑
t=tk

‖ϕ(st , at)‖Λ−1
t
,

is bounded based on the self-normalization inequality due to
[Abbasi-yadkori et al., 2011].
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Algorithm for Linear MDPs and Analysis

Regret for Infinite-Horizon Linear MDP

Lower Bound [Wu et al., 2022] Ω(d
√

sp(v∗)T )

FOPO [Wei et al., 2021] (inefficient) Õ(d1.5sp(v∗)
√
T )

OLSVI.FH [Wei et al., 2021] Õ(d0.75sp(v∗)0.5T 0.75)

LOOP [He et al., 2024] (inefficient) Õ(d1.5sp(v∗)1.5
√
T )

MDP-EXP2 [Wei et al., 2021] (ergodic) Õ(dτ 1.5
mix

√
T )

Theorem (Hong, Chae, Zhang, Lee, and Tewari, 2024+)

An efficient value iteration-based algorithm guarantees that for weakly
communicating linear MDPs with span sp(v∗),

Regret = Õ
(
d1.5sp(v∗)

√
T
)
.
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Algorithm for Linear Mixture MDPs and Analysis

Regret for Infinite-Horizon Linear Mixture MDP

Lower Bound [Wu et al., 2022] Ω(d
√

sp(v∗)T )

UCRL2-VTR [Wu et al., 2022] (communicating) Õ(d
√
DT )

Theorem (Chae, Hong, Zhang, Tewari and Lee, 2024+)

An efficient value iteration-based algorithm guarantees that for weakly
communicating linear mixture MDPs with span sp(v∗),

Regret = Õ
(
d
√

sp(v∗)T
)
.

Key Components for Improvement

• For linear mixture MDPs, the clipped value iteration procedure
converges!

• We apply variance-aware weighted linear regression for estimating θ.
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RL with Non-Linear Function Approximation

• Perhaps, the linearity assumption is too restrictive.

• It is not always clear how to impose 0 ≤ P(s ′ | s, a) ≤ 1 for the linear case.

• The underlying model function can be non-linear.
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RL with Multinomial Logistic Function Approximation

• [Hwang and Oh, 2023] proposed the multinomial logistic (MNL) function
approximation framework.

• Assume that the transition probability is given by

P(s ′ | s, a) =
exp

(
ϕ(s, a, s ′)>θ∗

)∑
s′′∈S exp (ϕ(s, a, s ′′)>θ∗)

.

• Advantage: the MNL framework is natural for modeling transition
probabilities.

• As the linear mixture MDP, ϕ : S ×A× S → Rd is a known feature
mapping.

• Moreover, θ∗ ∈ Rd is an unknown parameter.

• Again, we are interested in the regime where the dimension d is small.
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RL with Multinomial Logistic Function Approximation

Regret Bounds for MNL transitions (Finite-Horizon)

UCRL-MNL-LL+ [Cho et al., 2024] Õ(dH2
√
K)

Lower Bound [Our Result: Park, Kwon, and Lee, 2024+] Ω(dH1.5
√
K)

Regret Bounds for MNL transitions (Infinite-Horizon)

UCMNLK [Our Result: Park, Kwon, and Lee, 2024+] Õ(dsp(v∗)
√
T )

Lower Bound [Our Result: Park, Kwon, and Lee, 2024+] Ω(d
√

sp(v∗)T )
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Finite-Horizon Lower Bound

Theorem (Park, Kwon, and Lee, 2024+)

There is an MDP M with K ≥ {(d − 1)2H/2,H3(d − 1)2/32}, d ≥ 2, and
H ≥ 3 for which any algorithm A incurs

Regret ≥ (d − 1)H1.5
√
K

480
√

2
= Ω(dH1.5

√
K).
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UCMNLK

Theorem (Park, Kwon, and Lee, 2024+)

An efficient value iteration-based algorithm guarantees that for weakly
communicating MNL MDPs with span sp(v∗),

Regret = Õ
(
dsp(v∗)

√
T
)
.

• Log-likelihood function:

`t(θ) =
t−1∑
i=1

∑
s′∈Ssi ,ai

yi,s′ log pi (s
′, θ).

• Apply the online Newton method of [Zhang and Sugiyama, 2023] to
estimate the transition parameter θ∗:

θ̂t+1 = argminθ∈Θ

{
∇θ(`t(θ̂t))>(θ − θ̂t) +

1

2η
‖θ − θ̂t‖2

Σ̂t

}
.
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Infinite-Horizon Lower Bound

Theorem (Park, Kwon, and Lee, 2024+)

There is an MDP instance M with d ≥ 2, sp(v∗) ≥ 101, and
T ≥ 45(d − 1)2sp(v∗) for which any algorithm A incurs

Regret ≥ 1

4050
d
√
DT = Ω

(
d
√

sp(v∗)T
)
.
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Thank you!
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