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Reinforcement Learning for LLM
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Reinforcement Learning for AlphaGo
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Function Approximation for Reinforcement Learning

• Model the reward function, the transition kernel, or the value function
with a function class, e.g., neural networks.

• Applications (of mostly neural function approximation):
• Atari games [Mnih et al., 2015]
• Go [Silver et al., 2017]
• Robotics [Kober et al., 2013]
• Autonomous driving [Yurtsever et al., 2020].

• Despite this empirical success, we lack theoretical understanding of
function approximation frameworks.

Today’s Theme

Design and analyze function approximation frameworks and algorithms for
reinforcement learning with provable guarantees.
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Outline

• Markov Decision Process (MDP) (Background)

• Linear Function Approximation for Reinforcement Learning (RL)

• Multinomial Logistic (MNL) Function Approximation for RL
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Markov Decision Process (MDP)

Formulation

• π(a | s): policy, given by the probability of taking action a at state s

• r(s, a): reward from choosing action a at state s

• P(s ′ | s, a): probability of transitioning to state s ′ from state s when the
chosen action is a.
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Markov Decision Process (MDP)

Settings

• Finite-Horizon MDP

• Infinite-Horizon Average-Reward MDP

• Infinite-Horizon Discounted-Reward MDP
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Markov Decision Process (MDP)

Finite-Horizon MDP

• Fixed initial state (or a fixed distribution of the initial state).

• H: the finite length of the horizon.

• For example, arcade games.

• Basically, run an episode and reset.
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Markov Decision Process (MDP)

Infinite-Horizon Average-Reward MDP

• Continue the process without resetting.

• Start with the initial state s1.

• Given state st in time t, take action at and observe the next state st+1.

• For example, inventory management and financial planning.

• Average reward (under policy π):

Jπ(s1) = lim inf
T→∞

E

[
1

T

T∑
t=1

r(st , at)

]
.

• Optimal policy:
π∗ ∈ argmaxπ {J

π(s1)} .
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Markov Decision Process (MDP)

Infinite-Horizon Discounted-Reward MDP

• Similar to the infinite-horizon average-reward setting.

• Discounted reward (under policy π):

V π(s1) = lim inf
T→∞

E

[
T∑
t=1

γt−1r(st , at)

]

for some discount factor γ ∈ (0, 1).

11/40



Computing Optimal Policies for MDPs

• If the reward and transition functions are known, we can efficiently
compute an optimal policy for both finite- and infinite- horizon MDPs.

• One may use the following frameworks to compute an optimal policy.
1 Linear programming-based methods.
2 Value iteration.
3 Policy iteration.
4 Policy gradient.
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Reinforcement Learning for MDPs

Reinforcement Learning for Infinite-Horizon Average-Reward MDP

• At state st for time step t, take action at from policy πt

• Observe r(st , at) + εt (noisy reward) and the next state st+1.

• Learn the reward function r and the transition function P.

• Update πt to obtain policy πt+1 for time step t + 1.

• Total cumulative reward over T steps:

T∑
t=1

r (st , at) .

• Regret:

T ·max
π

{
lim inf
T→∞

1

T
· E

[
T∑
t=1

r (sπt , a
π
t )

]}
︸ ︷︷ ︸

optimal average reward

−
T∑
t=1

r (st , at)
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Regret Bounds

Infinite-Horizon Average-Reward MDP

• Not all MDPs are learnable!

• Not learnable means that no algorithm can guarantee a sublinear regret.

Regret(T )

= T ·max
π

{
lim inf
T→∞

1

T
· E

[
T∑
t=1

r (sπt , a
π
t )

]}
−

T∑
t=1

r (st , at) = o(T )︸ ︷︷ ︸
sublinear in T

(sublinear in T : Regret(T )/T → 0 as T →∞).
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Regret Bounds

Infinite-Horizon Average-Reward MDP

• Recovery from a bad state to a good state should be possible!

• Ergodic MDP: every policy induces a single recurrent class.

• Communicating MDP: one can travel from one state to any other state by
a policy.

• Weakly Communicating MDP: state space S has a set of communicating
states, and the others are transient states.
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Regret Bounds

Infinite-Horizon Average-Reward Tabular MDP

• Communicating MDP: MDPs with bounded diameter, where

D︸︷︷︸
diameter of an MDP M

= max
s 6=s′∈S

min
π:S→A

E

 T (s ′ | M, π, s)︸ ︷︷ ︸
travel time from s to s′

 .
• Weakly Communicating MDP: MDPs with bounded span, where

sp(v∗) = max
s∈S

v∗(s)−min
s∈S

v∗(s)

and v∗ is the optimal associated bias function.

• For communicating MDPs, sp(v∗) ≤ D.
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Regret Bounds

• Regret (S : # of states, A: # of actions):

Regret Lower Bound [Jaksch et al., 2010] Ω(
√

sp(v∗)SAT )

UCRL2 [Jaksch et al., 2010] Õ(DS
√
AT )

Thompson Sampling [Agrawal and Jia, 2017] Õ(D
√
SAT )

REGAL.D [Bartlett and Tewari, 2009] Õ(sp(v∗)S
√
AT )

EBF [Zhang and Ji, 2019] Õ(
√

sp(v∗)SAT )

General Goal

1. Prove a strong lower bound
2. Develop an algorithm whose regret upper bound is close to the lower bound.
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RL with Function Approximation

• For infinite-horizon average-reward MDPs, the regret lower bound is

Infinite-horizon [Jaksch et al., 2010] Ω(
√

sp(v∗)SAT )

• When S or A is large, the regret is large.

• Atari: 10100 states, Go: 10170 states.
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RL with Function Approximation

• There can be some underlying structures for a given MDP.

• Hence, we may approximate the reward function or the transition kernel
by a function class, e.g., neural networks.

• Applications (of mostly neural function approximation):
• Atari games [Mnih et al., 2015]
• Go [Silver et al., 2017]
• Robotics [Kober et al., 2013]
• Autonomous driving [Yurtsever et al., 2020].

Question

Assuming that the reward and transition functions come from a function class,
can we guarantee a smaller regret bound?
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Linear Function Approximation

Linear MDP

• Assume that the transition probability is given by

P(s ′ | s, a) = ϕ(s, a)>µ(s ′).

• ϕ : S ×A → Rd is a known feature mapping.

• µ : S → Rd is an unknown parameter function.

• We are interested in the regime where the dimension d is small.

• The task is to learn the unknown parameter function µ.
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Linear Function Approximation

Linear Mixture MDP

• Assume that the transition probability is given by

P(s ′ | s, a) = ϕ(s, a, s ′)>θ.

• ϕ : S ×A× S → Rd is a known feature mapping.

• θ ∈ Rd is an unknown parameter.

• We are interested in the regime where the dimension d is small.

• The task is to learn the unknown parameter θ.
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Linear Function Approximation

Regret for Infinite-Horizon Linear MDP

Lower Bound [Wu et al., 2022] Ω(d
√

sp(v∗)T )

FOPO [Wei et al., 2021] (inefficient) Õ(d1.5sp(v∗)
√
T )

OLSVI.FH [Wei et al., 2021] Õ(d0.75sp(v∗)0.5T 0.75)

LOOP [He et al., 2024] (inefficient) Õ(d1.5sp(v∗)1.5
√
T )

MDP-EXP2 [Wei et al., 2021] (ergodic) Õ(dτ 1.5
mix

√
T )

Theorem (Hong, Chae, Zhang, Lee, and Tewari, 2024+)

An efficient value iteration-based algorithm guarantees that for weakly
communicating linear MDPs with span sp(v∗),

Regret = Õ
(
d1.5sp(v∗)

√
T
)
.

• We achieve the best regret upper bound with an efficient algorithm.
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Linear Function Approximation

Corollary (Hong, Chae, Zhang, Lee, and Tewari, 2024+)

There is an efficient model-free algorithm that guarantees that

Regret = Õ
(
sp(v∗)S1.5A1.5

√
T
)

for weakly communicating MDPs with span sp(v∗) where S and A are the
numbers of states and actions.

• This improves upon the regret upper bound of

Regret = Õ
(
sp(v∗)S5A2

√
T
)

due to [Zhang and Xie, 2023].
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Linear Function Approximation

Regret for Infinite-Horizon Linear Mixture MDP

Lower Bound [Wu et al., 2022] Ω(d
√

sp(v∗)T )

UCRL2-VTR [Wu et al., 2022] (communicating) Õ(d
√
DT )

Theorem (Chae, Hong, Zhang, Tewari and Lee, 2024+)

An efficient value iteration-based algorithm guarantees that for weakly
communicating linear mixture MDPs with span sp(v∗),

Regret = Õ
(
d
√

sp(v∗)T
)
.

• Our algorithm is minimax optimal!
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Algorithm for Linear MDPs and Analysis

Parameter Estimation

1 There exists θ∗ ∈ Rd such that

Es′∼P(·|s,a)

[
V (s ′)

]
= ϕ(s, a)>θ∗

for any value function V and state-action pair (s, a).

2 To obtain θ, we apply ridge regression:

θ̂ = argminθ∈Rd λ‖θ‖2
2 +

∑
τ

ϕ(sτ , aτ )>θ︸ ︷︷ ︸
expected value

− V (sτ+1)︸ ︷︷ ︸
realized value


2

.
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Algorithm for Linear MDPs and Analysis

Value Iteration with Clipping

1 Approximate the average-reward MDP by a discounted-reward MDP.

2 Run value iteration on the disounted-reward MDP:

Qn+1(s, a) =

r(s, a) + γ · ϕ(s, a)>θ̄n︸ ︷︷ ︸
discounted value iteration

+ β ‖ϕ(s, a)‖Σ−1︸ ︷︷ ︸
bonus term for optimism


[0,(1−γ)−1]

.

3 Apply the following clipping operation to control span:

Vn+1(s) = min

max
a

Qn+1(s, a), min
s′

max
a

Qn+1(s ′, a) + 2 · sp(v∗)︸ ︷︷ ︸
threshold

 .
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Algorithm for Linear MDPs and Analysis
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Algorithm for Linear MDPs and Analysis

Proof for Regret Upper Bound

• The regret function can be decomposed as follows.

Lemma

Regret

≤
K∑

k=1

tk+1−1∑
t=tk

(J∗ − (1− γ)V k
t+1(st+1))

︸ ︷︷ ︸
(a)

+γ
K∑

k=1

tk+1−1∑
t=tk

(V k
t+1(st+1)− Qk

t (st , at))

︸ ︷︷ ︸
(b)

+ γ

K∑
k=1

tk+1−1∑
t=tk

(
Es′∼P(·|st ,at )

[
V k

t+1(s ′)
]
− V k

t+1(st+1)
)

︸ ︷︷ ︸
(c)

+ 4β
K∑

k=1

tk+1−1∑
t=tk

‖ϕ(st , at)‖Λ−1
t︸ ︷︷ ︸

(d)
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Algorithm for Linear MDPs and Analysis

Proof for Regret Upper Bound

• Term (a), given by

K∑
k=1

tk+1−1∑
t=tk

(J∗ − (1− γ)V k
t+1(st+1)),

is due to approximation by the discounted-reward MDP.

Lemma

Let J∗ and v∗ be the optimal average reward and the optimal bias function,
and let V ∗ be the optimal discounted value function with discount factor
γ ∈ [0, 1). Then it holds that

max
s∈S
|J∗ − (1− γ)V ∗(s)| ≤ (1− γ)sp(v∗),

sp(V ∗) ≤ 2 · sp(v∗).
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Algorithm for Linear MDPs and Analysis

Proof for Regret Upper Bound

• Term (b), given by

K∑
k=1

tk+1−1∑
t=tk

(V k
t+1(st+1)− Qk

t (st , at)),

can be upper bounded based on

V k
t+1(st+1) ≤ max

a
Qk

t+1(st+1, a) = Qk
t+1(st+1, at+1).

• This leads to a telescoping sum.
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Algorithm for Linear MDPs and Analysis

Proof for Regret Upper Bound

• Term (c), given by

K∑
k=1

tk+1−1∑
t=tk

(
Es′∼P(·|st ,at )

[
V k

t+1(s ′)
]
− V k

t+1(st+1)
)
,

is bounded based on the covering argument due to [Jin et al., 2020] along
with the Azuma-Hoeffding inequality for martingales.

• Term (d), given by
K∑

k=1

tk+1−1∑
t=tk

‖ϕ(st , at)‖Λ−1
t
,

is bounded based on the self-normalization inequality due to
[Abbasi-yadkori et al., 2011].
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Algorithm for Linear MDPs and Analysis

Regret for Infinite-Horizon Linear MDP

Lower Bound [Wu et al., 2022] Ω(d
√

sp(v∗)T )

FOPO [Wei et al., 2021] (inefficient) Õ(d1.5sp(v∗)
√
T )

OLSVI.FH [Wei et al., 2021] Õ(d0.75sp(v∗)0.5T 0.75)

LOOP [He et al., 2024] (inefficient) Õ(d1.5sp(v∗)1.5
√
T )

MDP-EXP2 [Wei et al., 2021] (ergodic) Õ(dτ 1.5
mix

√
T )

Theorem (Hong, Chae, Zhang, Lee, and Tewari, 2024+)

An efficient value iteration-based algorithm guarantees that for weakly
communicating linear MDPs with span sp(v∗),

Regret = Õ
(
d1.5sp(v∗)

√
T
)
.
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Algorithm for Linear Mixture MDPs and Analysis

Regret for Infinite-Horizon Linear Mixture MDP

Lower Bound [Wu et al., 2022] Ω(d
√

sp(v∗)T )

UCRL2-VTR [Wu et al., 2022] (communicating) Õ(d
√
DT )

Theorem (Chae, Hong, Zhang, Tewari and Lee, 2024+)

An efficient value iteration-based algorithm guarantees that for weakly
communicating linear mixture MDPs with span sp(v∗),

Regret = Õ
(
d
√

sp(v∗)T
)
.

Key Components for Improvement

• For linear mixture MDPs, the clipped value iteration procedure
converges!

• We apply variance-aware weighted linear regression for estimating θ.
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RL with Non-Linear Function Approximation

• Perhaps, the linearity assumption is too restrictive.

• It is not always clear how to impose 0 ≤ P(s ′ | s, a) ≤ 1 for the linear case.

• The underlying model function can be non-linear.
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RL with Multinomial Logistic Function Approximation

• [Hwang and Oh, 2023] proposed the multinomial logistic (MNL) function
approximation framework.

• Assume that the transition probability is given by

P(s ′ | s, a) =
exp

(
ϕ(s, a, s ′)>θ∗

)∑
s′′∈S exp (ϕ(s, a, s ′′)>θ∗)

.

• Advantage: the MNL framework is natural for modeling transition
probabilities.

• As the linear mixture MDP, ϕ : S ×A× S → Rd is a known feature
mapping.

• Moreover, θ∗ ∈ Rd is an unknown parameter.

• Again, we are interested in the regime where the dimension d is small.
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RL with Multinomial Logistic Function Approximation

Regret Bounds for MNL transitions (Finite-Horizon)

UCRL-MNL-LL+ [Cho et al., 2024] Õ(dH2
√
K)

Lower Bound [Our Result: Park, Kwon, and Lee, 2024+] Ω(dH1.5
√
K)

Regret Bounds for MNL transitions (Infinite-Horizon)

UCMNLK [Our Result: Park, Kwon, and Lee, 2024+] Õ(dsp(v∗)
√
T )

Lower Bound [Our Result: Park, Kwon, and Lee, 2024+] Ω(d
√

sp(v∗)T )
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Finite-Horizon Lower Bound

Theorem (Park, Kwon, and Lee, 2024+)

There is an MDP M with K ≥ {(d − 1)2H/2,H3(d − 1)2/32}, d ≥ 2, and
H ≥ 3 for which any algorithm A incurs

Regret ≥ (d − 1)H1.5
√
K

480
√

2
= Ω(dH1.5

√
K).
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UCMNLK

Theorem (Park, Kwon, and Lee, 2024+)

An efficient value iteration-based algorithm guarantees that for weakly
communicating MNL MDPs with span sp(v∗),

Regret = Õ
(
dsp(v∗)

√
T
)
.

• Log-likelihood function:

`t(θ) =
t−1∑
i=1

∑
s′∈Ssi ,ai

yi,s′ log pi (s
′, θ).

• Apply the online Newton method of [Zhang and Sugiyama, 2023] to
estimate the transition parameter θ∗:

θ̂t+1 = argminθ∈Θ

{
∇θ(`t(θ̂t))>(θ − θ̂t) +

1

2η
‖θ − θ̂t‖2

Σ̂t

}
.
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Infinite-Horizon Lower Bound

Theorem (Park, Kwon, and Lee, 2024+)

There is an MDP instance M with d ≥ 2, sp(v∗) ≥ 101, and
T ≥ 45(d − 1)2sp(v∗) for which any algorithm A incurs

Regret ≥ 1

4050
d
√
DT = Ω

(
d
√

sp(v∗)T
)
.
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Thank you!
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stochastic bandits. In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and
K. Weinberger, editors, Advances in Neural Information Processing Systems,
volume 24. Curran Associates, Inc., 2011. URL
https://proceedings.neurips.cc/paper_files/paper/2011/file/

e1d5be1c7f2f456670de3d53c7b54f4a-Paper.pdf.

S. Agrawal and R. Jia. Optimistic posterior sampling for reinforcement
learning: worst-case regret bounds. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances
in Neural Information Processing Systems, volume 30. Curran Associates,
Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/

2017/file/3621f1454cacf995530ea53652ddf8fb-Paper.pdf.

P. L. Bartlett and A. Tewari. Regal: a regularization based algorithm for
reinforcement learning in weakly communicating mdps. In Proceedings of the
Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, UAI ’09,
page 35–42, Arlington, Virginia, USA, 2009. AUAI Press. ISBN
9780974903958.

W. Cho, T. Hwang, J. Lee, and M. hwan Oh. Randomized exploration for
reinforcement learning with multinomial logistic function approximation,
2024.

J. He, H. Zhong, and Z. Yang. Sample-efficient learning of infinite-horizon
average-reward MDPs with general function approximation. In The Twelfth

Dabeen Lee Infinite-Horizon Average-Reward RL with Linear Function Approximation

https://proceedings.neurips.cc/paper_files/paper/2011/file/e1d5be1c7f2f456670de3d53c7b54f4a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2011/file/e1d5be1c7f2f456670de3d53c7b54f4a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3621f1454cacf995530ea53652ddf8fb-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3621f1454cacf995530ea53652ddf8fb-Paper.pdf


40/40

References

International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=fq1wNrC2ai.

T. Hwang and M.-h. Oh. Model-based reinforcement learning with multinomial
logistic function approximation. Proceedings of the AAAI Conference on
Artificial Intelligence, 37(7):7971–7979, Jun. 2023. doi:
10.1609/aaai.v37i7.25964. URL
https://ojs.aaai.org/index.php/AAAI/article/view/25964.

T. Jaksch, R. Ortner, and P. Auer. Near-optimal regret bounds for
reinforcement learning. J. Mach. Learn. Res., 11:1563–1600, aug 2010. ISSN
1532-4435.

C. Jin, Z. Yang, Z. Wang, and M. I. Jordan. Provably efficient reinforcement
learning with linear function approximation. In J. Abernethy and S. Agarwal,
editors, Proceedings of Thirty Third Conference on Learning Theory, volume
125 of Proceedings of Machine Learning Research, pages 2137–2143. PMLR,
09–12 Jul 2020. URL
https://proceedings.mlr.press/v125/jin20a.html.

J. Kober, J. A. Bagnell, and J. Peters. Reinforcement learning in robotics: A
survey. The International Journal of Robotics Research, 32(11):1238–1274,
2013. doi: 10.1177/0278364913495721. URL
https://doi.org/10.1177/0278364913495721.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen,

Dabeen Lee Infinite-Horizon Average-Reward RL with Linear Function Approximation

https://openreview.net/forum?id=fq1wNrC2ai
https://ojs.aaai.org/index.php/AAAI/article/view/25964
https://proceedings.mlr.press/v125/jin20a.html
https://doi.org/10.1177/0278364913495721


40/40

References

C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra,
S. Legg, and D. Hassabis. Human-level control through deep reinforcement
learning. Nature, 518(7540):529–533, 2015. doi: 10.1038/nature14236.
URL https://doi.org/10.1038/nature14236.

D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez,
T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui,
L. Sifre, G. van den Driessche, T. Graepel, and D. Hassabis. Mastering the
game of go without human knowledge. Nature, 550(7676):354–359, 2017.
doi: 10.1038/nature24270. URL https://doi.org/10.1038/nature24270.

C.-Y. Wei, M. Jafarnia Jahromi, H. Luo, and R. Jain. Learning infinite-horizon
average-reward mdps with linear function approximation. In A. Banerjee and
K. Fukumizu, editors, Proceedings of The 24th International Conference on
Artificial Intelligence and Statistics, volume 130 of Proceedings of Machine
Learning Research, pages 3007–3015. PMLR, 13–15 Apr 2021. URL
https://proceedings.mlr.press/v130/wei21d.html.

Y. Wu, D. Zhou, and Q. Gu. Nearly minimax optimal regret for learning
infinite-horizon average-reward mdps with linear function approximation. In
G. Camps-Valls, F. J. R. Ruiz, and I. Valera, editors, Proceedings of The
25th International Conference on Artificial Intelligence and Statistics, volume
151 of Proceedings of Machine Learning Research, pages 3883–3913. PMLR,
28–30 Mar 2022. URL
https://proceedings.mlr.press/v151/wu22a.html.

Dabeen Lee Infinite-Horizon Average-Reward RL with Linear Function Approximation

https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature24270
https://proceedings.mlr.press/v130/wei21d.html
https://proceedings.mlr.press/v151/wu22a.html


40/40

References

E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda. A survey of autonomous
driving: Common practices and emerging technologies. IEEE Access, 8:
58443–58469, 2020. doi: 10.1109/ACCESS.2020.2983149.

Y.-J. Zhang and M. Sugiyama. Online (multinomial) logistic bandit: Improved
regret and constant computation cost. In A. Oh, T. Naumann, A. Globerson,
K. Saenko, M. Hardt, and S. Levine, editors, Advances in Neural Information
Processing Systems, volume 36, pages 29741–29782. Curran Associates, Inc.,
2023. URL
https://proceedings.neurips.cc/paper_files/paper/2023/file/

5ef04392708bb2340cb9b7da41225660-Paper-Conference.pdf.

Z. Zhang and X. Ji. Regret minimization for reinforcement learning by
evaluating the optimal bias function. In H. Wallach, H. Larochelle,
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